IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p11018-d905998.html
   My bibliography  Save this article

Fuelwood in South Africa Revisited: Widespread Use in a Policy Vacuum

Author

Listed:
  • Charlie Shackleton

    (Department of Environmental Science, Rhodes University, Makhanda 6140, South Africa)

  • Gisele Sinasson

    (Department of Environmental Science, Rhodes University, Makhanda 6140, South Africa)

  • Opeyemi Adeyemi

    (Department of Environmental Science, Rhodes University, Makhanda 6140, South Africa)

  • Vusumzi Martins

    (Department of Environmental Science, Rhodes University, Makhanda 6140, South Africa)

Abstract

South Africa has experienced massive urbanisation and socioeconomic development over the past two decades. Concomitantly, the national energy policy focuses on the provision of modern fuels, notably electricity, for domestic use. Given this policy environment and socioeconomic development, we examine pertinent literature and policies from South Africa on fuelwood use, value, and sustainability to understand how it might have changed in tandem with the national shifts in urbanisation and socioeconomic development over the last 20 years. Recent literature shows that fuelwood is still used to some extent by 96% of rural households and 69% of low-income urban ones. We also estimate that the use of fuelwood by rural households alone is valued at approximately ZAR 10.5 billion (approx. USD 700 million) annually, with the probability of an equally high value to low-income urban households. However, despite the extensive use and high value, our analysis of cognate national policies related to energy, forestry, environment, and social development, show that fuelwood and its use is hardly considered, indicating a policy vacuum. This policy vacuum means that there is no strategic or apposite support or interventions in any localised areas where fuelwood demand might exceed supply, thereby undermining the livelihoods and energy security of affected citizens, most notably the poor.

Suggested Citation

  • Charlie Shackleton & Gisele Sinasson & Opeyemi Adeyemi & Vusumzi Martins, 2022. "Fuelwood in South Africa Revisited: Widespread Use in a Policy Vacuum," Sustainability, MDPI, vol. 14(17), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:11018-:d:905998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/11018/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/11018/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Viana, H. & Cohen, Warren B. & Lopes, D. & Aranha, J., 2010. "Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal," Applied Energy, Elsevier, vol. 87(8), pages 2551-2560, August.
    2. Bohlmann, Jessika Andreina & Inglesi-Lotz, Roula, 2018. "Analysing the South African residential sector's energy profile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 240-252.
    3. Ye, Yuxiang & Koch, Steven F., 2021. "Measuring energy poverty in South Africa based on household required energy consumption," Energy Economics, Elsevier, vol. 103(C).
    4. Madubansi, M. & Shackleton, C.M., 2006. "Changing energy profiles and consumption patterns following electrification in five rural villages, South Africa," Energy Policy, Elsevier, vol. 34(18), pages 4081-4092, December.
    5. Romagnoli, Francesco & Barisa, Aiga & Dzene, Ilze & Blumberga, Andra & Blumberga, Dagnija, 2014. "Implementation of different policy strategies promoting the use of wood fuel in the Latvian district heating system: Impact evaluation through a system dynamic model," Energy, Elsevier, vol. 76(C), pages 210-222.
    6. Shackleton, C.M. & Mograbi, P.J. & Drimie, S. & Fay, D. & Hebinck, P. & Hoffman, M.T. & Maciejewski, K. & Twine, W., 2019. "Deactivation of field cultivation in communal areas of South Africa: Patterns, drivers and socio-economic and ecological consequences," Land Use Policy, Elsevier, vol. 82(C), pages 686-699.
    7. Kaoma, Humphrey & Shackleton, Charlie M., 2015. "The direct-use value of urban tree non-timber forest products to household income in poorer suburbs in South African towns," Forest Policy and Economics, Elsevier, vol. 61(C), pages 104-112.
    8. Sylvain Caurla & Philippe Delacote & Franck Lecocq & Ahmed Barkaoui, 2013. "Stimulating fuelwood consumption through public policies: an assessment of economic and resource impacts based on the french forest sector model," Post-Print hal-01072295, HAL.
    9. Cutz, L. & Masera, O. & Santana, D. & Faaij, A.P.C., 2017. "Switching to efficient technologies in traditional biomass intensive countries: The resultant change in emissions," Energy, Elsevier, vol. 126(C), pages 513-526.
    10. Dewees, Peter A., 1989. "The woodfuel crisis reconsidered: Observations on the dynamics of abundance and scarcity," World Development, Elsevier, vol. 17(8), pages 1159-1172, August.
    11. Caurla, Sylvain & Delacote, Philippe & Lecocq, Franck & Barkaoui, Ahmed, 2013. "Stimulating fuelwood consumption through public policies: An assessment of economic and resource impacts based on the French Forest Sector Model," Energy Policy, Elsevier, vol. 63(C), pages 338-347.
    12. Arnold, J.E. Michael & Kohlin, Gunnar & Persson, Reidar, 2006. "Woodfuels, livelihoods, and policy interventions: Changing Perspectives," World Development, Elsevier, vol. 34(3), pages 596-611, March.
    13. Matsika, R. & Erasmus, B.F.N. & Twine, W.C., 2013. "Double jeopardy: The dichotomy of fuelwood use in rural South Africa," Energy Policy, Elsevier, vol. 52(C), pages 716-725.
    14. Lauri, Pekka & Havlík, Petr & Kindermann, Georg & Forsell, Nicklas & Böttcher, Hannes & Obersteiner, Michael, 2014. "Woody biomass energy potential in 2050," Energy Policy, Elsevier, vol. 66(C), pages 19-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John M. Kandulu & Alec Zuo & Sarah Wheeler & Theogene Dusingizimana & Mizeck G. G. Chagunda, 2024. "Influence of climate-smart technologies on the success of livestock donation programs for smallholder farmers in Rwanda," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(3), pages 1-27, March.
    2. Shackleton, C.M. & Adeyemi, O. & Setty, S., 2024. "Why are non-wood forest products still the poor relative in Global Forest Resources Assessments?," Forest Policy and Economics, Elsevier, vol. 163(C).
    3. Marcel Maré & Mugendi K. M’Rithaa & Alettia Chisin, 2023. "Influencing Motivations Linked to the Adoption of Improved Flame-Based Cookstoves among Indigent South African Households: A Behaviour-Centred Design Approach," Sustainability, MDPI, vol. 15(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Jun & Li, Yanan & Qian, Yanjun & Liu, Guoquan, 2024. "Effectiveness of government subsidies for biomass-based industries: Incorporating the feedstock acquisition process," Energy Policy, Elsevier, vol. 192(C).
    2. Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
    3. Phosiso Sola & Caroline Ochieng & Jummai Yila & Miyuki Iiyama, 2016. "Links between energy access and food security in sub Saharan Africa: an exploratory review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 635-642, June.
    4. Matsika, R. & Erasmus, B.F.N. & Twine, W.C., 2013. "Double jeopardy: The dichotomy of fuelwood use in rural South Africa," Energy Policy, Elsevier, vol. 52(C), pages 716-725.
    5. Etienne Lorang & Antonello Lobianco & Philippe Delacote, 2023. "Increasing Paper and Cardboard Recycling: Impacts on the Forest Sector and Carbon Emissions," Post-Print hal-04690101, HAL.
    6. Mugido, Worship & Shackleton, Charlie M., 2019. "The contribution of NTFPS to rural livelihoods in different agro-ecological zones of South Africa," Forest Policy and Economics, Elsevier, vol. 109(C).
    7. Ye, Yuxiang & Koch, Steven F., 2021. "Measuring energy poverty in South Africa based on household required energy consumption," Energy Economics, Elsevier, vol. 103(C).
    8. Démurger, Sylvie & Fournier, Martin, 2011. "Poverty and firewood consumption: A case study of rural households in northern China," China Economic Review, Elsevier, vol. 22(4), pages 512-523.
    9. Maes, Wouter H. & Verbist, Bruno, 2012. "Increasing the sustainability of household cooking in developing countries: Policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4204-4221.
    10. Caurla, Sylvain & Bertrand, Vincent & Delacote, Philippe & Le Cadre, Elodie, 2018. "Heat or power: How to increase the use of energy wood at the lowest cost?," Energy Economics, Elsevier, vol. 75(C), pages 85-103.
    11. Lobianco, Antonello & Caurla, Sylvain & Delacote, Philippe & Barkaoui, Ahmed, 2016. "Carbon mitigation potential of the French forest sector under threat of combined physical and market impacts due to climate change," Journal of Forest Economics, Elsevier, vol. 23(C), pages 4-26.
    12. Ding, Chaoxun & Zhang, Ruidan & Wu, Xuepin, 2023. "The impact of product diversity and distribution networks on consumption expansion," Journal of Business Research, Elsevier, vol. 161(C).
    13. Takama, Takeshi & Tsephel, Stanzin & Johnson, Francis X., 2012. "Evaluating the relative strength of product-specific factors in fuel switching and stove choice decisions in Ethiopia. A discrete choice model of household preferences for clean cooking alternatives," Energy Economics, Elsevier, vol. 34(6), pages 1763-1773.
    14. Lobianco, Antonello & Delacote, Philippe & Caurla, Sylvain & Barkaoui, Ahmed, 2015. "The importance of introducing spatial heterogeneity in bio-economic forest models: Insights gleaned from FFSM++," Ecological Modelling, Elsevier, vol. 309, pages 82-92.
    15. Dalia Fadly & Francisco Fontes & Miet Maertens, 2023. "Fuel for food: Access to clean cooking fuel and food security in India," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(2), pages 301-321, April.
    16. Anna Kożuch & Dominika Cywicka & Krzysztof Adamowicz & Marek Wieruszewski & Emilia Wysocka-Fijorek & Paweł Kiełbasa, 2023. "The Use of Forest Biomass for Energy Purposes in Selected European Countries," Energies, MDPI, vol. 16(15), pages 1-21, August.
    17. Sergent, Arnaud, 2014. "Sector-based political analysis of energy transition: Green shift in the forest policy regime in France," Energy Policy, Elsevier, vol. 73(C), pages 491-500.
    18. Kowsari, Reza & Zerriffi, Hisham, 2011. "Three dimensional energy profile:," Energy Policy, Elsevier, vol. 39(12), pages 7505-7517.
    19. Tanner, Andrew M. & Johnston, Alison L., 2017. "The Impact of Rural Electric Access on Deforestation Rates," World Development, Elsevier, vol. 94(C), pages 174-185.
    20. Etienne Lorang & Antonello Lobianco & Philippe Delacote, 2021. "Sectoral, resource and carbon impacts of increased paper and cardboard recycling," Working Papers 2021.12, FAERE - French Association of Environmental and Resource Economists.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:11018-:d:905998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.