IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7963-d851975.html
   My bibliography  Save this article

The Spatiotemporal Evolution and Prediction of Carbon Storage in the Yellow River Basin Based on the Major Function-Oriented Zone Planning

Author

Listed:
  • Jinfeng Wang

    (School of Geographical Science, Shanxi Normal University, Taiyuan 030031, China)

  • Lingfeng Li

    (School of Geographical Science, Shanxi Normal University, Taiyuan 030031, China)

  • Qing Li

    (Institute of Geographical Sciences, Hebei Academy of Sciences, Hebei Engineering Research Center for Geographic Information Application, Shijiazhuang 050011, China)

  • Sheng Wang

    (School of Geographical Science, Shanxi Normal University, Taiyuan 030031, China)

  • Xiaoling Liu

    (School of Geographical Science, Shanxi Normal University, Taiyuan 030031, China)

  • Ya Li

    (School of Geographical Science, Shanxi Normal University, Taiyuan 030031, China)

Abstract

Land use/cover change is the main reason for the variation of ecosystem carbon storage. The study of the impact of land use on carbon storage has certain reference values for realizing high-quality development in the Yellow River Basin. In this paper, the InVEST model was used to simulate the variation of carbon storage in the Yellow River Basin in 2000, 2005, 2010, 2015, and 2020, and to predict the carbon storage in 2030 in combination with the CA-Markov model, as well as to discuss the impact of land use on carbon storage. The results showed that: (1) The variation trend of carbon storage for different land use types in the Yellow River Basin was different and was mainly manifested as a decrease of cultivated land and unused land, and an increase of forest land, grassland, water, and construction land. The carbon storage in the provincial key development prioritized zone, national development optimized zone, and provincial development optimized zone showed decreasing trends, while the national key development prioritized zone and national major grain producing zone presented a fluctuating downward trend. (2) The ecosystem carbon storage function weakened after 2000, and part of the carbon sink area transformed into a carbon source area. The area with low carbon storage was distributed in the west of the provincial key ecological function zone, and the area with high carbon storage was concentrated in the south and middle of national key ecological function zone and the east of the provincial key ecological function zone. (3) The carbon loss was largest in the urban expansion scenario (UES), followed by the natural development scenario (NDS) and ecological protection scenario (EPS). The carbon storage of different scenarios presented significant positive correlations with land use intensity.

Suggested Citation

  • Jinfeng Wang & Lingfeng Li & Qing Li & Sheng Wang & Xiaoling Liu & Ya Li, 2022. "The Spatiotemporal Evolution and Prediction of Carbon Storage in the Yellow River Basin Based on the Major Function-Oriented Zone Planning," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7963-:d:851975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7963/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7963/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dik Roth & Michiel Köhne & Elisabet Dueholm Rasch & Madelinde Winnubst, 2021. "After the facts: Producing, using and contesting knowledge in two spatial-environmental conflicts in the Netherlands," Environment and Planning C, , vol. 39(3), pages 626-645, May.
    2. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(Supplemen), pages 33-39, January.
    3. Farihahusnah Hussin & Mohamed Kheireddine Aroua & Mohd Azlan Kassim & Umi Fazara Md. Ali, 2021. "Transforming Plastic Waste into Porous Carbon for Capturing Carbon Dioxide: A Review," Energies, MDPI, vol. 14(24), pages 1-22, December.
    4. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(S1), pages 33-39.
    5. Gaglio, Mattias & Aschonitis, Vassilis & Castaldelli, Giuseppe & Fano, Elisa Anna, 2020. "Land use intensification rather than land cover change affects regulating services in the mountainous Adige river basin (Italy)," Ecosystem Services, Elsevier, vol. 45(C).
    6. Lena Mikhelkis & Venkatesh Govindarajan, 2020. "Techno-Economic and Partial Environmental Analysis of Carbon Capture and Storage (CCS) and Carbon Capture, Utilization, and Storage (CCU/S): Case Study from Proposed Waste-Fed District-Heating Inciner," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    7. Yuqing Xu & Fengjin Xiao, 2022. "Assessing Changes in the Value of Forest Ecosystem Services in Response to Climate Change in China," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    8. Wenhui Zhao & Jibin Ma & Zhanyang Wang & Youting Li & Weishi Zhang, 2022. "Potential Hydrogen Market: Value-Added Services Increase Economic Efficiency for Hydrogen Energy Suppliers," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    9. Christian P. Giardina & Michael G. Ryan, 2000. "Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature," Nature, Nature, vol. 404(6780), pages 858-861, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenqiang Zhou & Jinlong Wang & Yu Han & Ling Yang & Huafei Que & Rong Wang, 2023. "Scenario Simulation of the Relationship between Land-Use Changes and Ecosystem Carbon Storage: A Case Study in Dongting Lake Basin, China," IJERPH, MDPI, vol. 20(6), pages 1-19, March.
    2. Lili Geng & Yuanyuan Zhang & Huixian Hui & Yuhan Wang & Yongji Xue, 2023. "Response of Urban Ecosystem Carbon Storage to Land Use/Cover Change and Its Vulnerability Based on Major Function-Oriented Zone Planning," Land, MDPI, vol. 12(8), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    2. repec:bla:afrdev:v:29:y:2017:i:s2:p:163-178 is not listed on IDEAS
    3. Li, Guochun & Niu, Wenquan & Ma, Li & Du, Yadan & Zhang, Qian & Gan, Haicheng & Siddique, Kadambot H.M., 2024. "Effects of drip irrigation upper limits on rhizosphere soil bacterial communities, soil organic carbon, and wheat yield," Agricultural Water Management, Elsevier, vol. 293(C).
    4. Timothy Capon & Michael Harris & Andrew Reeson, 2013. "The Design of Markets for Soil Carbon Sequestration," Economic Papers, The Economic Society of Australia, vol. 32(2), pages 161-173, June.
    5. Jayne, T.S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, "undated". "Agricultural Input Subsidy Programs In Africa: An Assessment Of Recent Evidence," Feed the Future Innovation Lab for Food Security Policy Research Papers 259509, Michigan State University, Department of Agricultural, Food, and Resource Economics, Feed the Future Innovation Lab for Food Security (FSP).
    6. Wassenaar, T. & Doelsch, E. & Feder, F. & Guerrin, F. & Paillat, J.-M. & Thuriès, L. & Saint Macary, H., 2014. "Returning Organic Residues to Agricultural Land (RORAL) – Fuelling the Follow-the-Technology approach," Agricultural Systems, Elsevier, vol. 124(C), pages 60-69.
    7. Tran, Dat Q. & Kurkalova, Lyubov A., "undated". "Testing for complementarity between the use of continuous no-till and cover crops: an application of Entropy approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259149, Agricultural and Applied Economics Association.
    8. Dorota Wichrowska & Małgorzata Szczepanek, 2020. "Possibility of Limiting Mineral Fertilization in Potato Cultivation by Using Bio-fertilizer and Its Influence on Protein Content in Potato Tubers," Agriculture, MDPI, vol. 10(10), pages 1-16, September.
    9. Mohamed E. A. El-sayed & Mohamed Hazman & Ayman Gamal Abd El-Rady & Lal Almas & Mike McFarland & Ali Shams El Din & Steve Burian, 2021. "Biochar Reduces the Adverse Effect of Saline Water on Soil Properties and Wheat Production Profitability," Agriculture, MDPI, vol. 11(11), pages 1-11, November.
    10. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    11. Getnet, Kindie & Mekuria, Wolde & Langan, Simon & Rivington, Mike & Novo, Paula & Black, Helaina, 2017. "Ecosystem-based interventions and farm household welfare in degraded areas: Comparative evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 154(C), pages 53-62.
    12. Yosefin Ari Silvianingsih & Kurniatun Hairiah & Didik Suprayogo & Meine van Noordwijk, 2021. "Kaleka Agroforest in Central Kalimantan (Indonesia): Soil Quality, Hydrological Protection of Adjacent Peatlands, and Sustainability," Land, MDPI, vol. 10(8), pages 1-20, August.
    13. Miftha Beshir & Nicolas Brüggemann & Fantaw Yimer & Menfese Tadesse & Björn Thiele & Diana Hofmann, 2023. "Polycyclic Aromatic Hydrocarbons (PAHs) and Bis(2-ethylhexyl) Phthalate (BEHP) in the Soil of Teff- Acacia decurrens -Charcoal Production System in Northern Ethiopia," Land, MDPI, vol. 12(12), pages 1-14, November.
    14. Anna A. Romanovskaya & Vladimir N. Korotkov & Polina D. Polumieva & Alexander A. Trunov & Victoria Yu. Vertyankina & Rodion T. Karaban, 2020. "Greenhouse gas fluxes and mitigation potential for managed lands in the Russian Federation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 661-687, April.
    15. Jianzheng Li & Zhongkui Luo & Yingchun Wang & Hu Li & Hongtao Xing & Ligang Wang & Enli Wang & Hui Xu & Chunyu Gao & Tianzhi Ren, 2019. "Optimizing Nitrogen and Residue Management to Reduce GHG Emissions while Maintaining Crop Yield: A Case Study in a Mono-Cropping System of Northeast China," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    16. Sabine Zikeli & Sabine Gruber & Claus-Felix Teufel & Karin Hartung & Wilhelm Claupein, 2013. "Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management," Sustainability, MDPI, vol. 5(9), pages 1-19, September.
    17. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    18. Michał Pierzchalski, 2022. "Straw Bale Building as a Low-Tech Solution: A Case Study in Northern Poland," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    19. Nath, Arun Jyoti & Lal, Rattan, 2017. "Managing tropical wetlands for advancing global rice production: Implications for land-use management," Land Use Policy, Elsevier, vol. 68(C), pages 681-685.
    20. Beata Bień & Anna Grobelak & Jurand Bień & Daria Sławczyk & Kamil Kozłowski & Klaudia Wysokowska & Mateusz Rak, 2025. "Dry Anaerobic Digestion of Selectively Collected Biowaste: Technological Advances, Process Optimization and Energy Recovery Perspectives," Energies, MDPI, vol. 18(17), pages 1-35, August.
    21. Willenbockel, Dirk, 2014. "Reflections on the prospects for pro-poor low-carbon growth," MPRA Paper 69863, University Library of Munich, Germany.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7963-:d:851975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.