IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7963-d851975.html
   My bibliography  Save this article

The Spatiotemporal Evolution and Prediction of Carbon Storage in the Yellow River Basin Based on the Major Function-Oriented Zone Planning

Author

Listed:
  • Jinfeng Wang

    (School of Geographical Science, Shanxi Normal University, Taiyuan 030031, China)

  • Lingfeng Li

    (School of Geographical Science, Shanxi Normal University, Taiyuan 030031, China)

  • Qing Li

    (Institute of Geographical Sciences, Hebei Academy of Sciences, Hebei Engineering Research Center for Geographic Information Application, Shijiazhuang 050011, China)

  • Sheng Wang

    (School of Geographical Science, Shanxi Normal University, Taiyuan 030031, China)

  • Xiaoling Liu

    (School of Geographical Science, Shanxi Normal University, Taiyuan 030031, China)

  • Ya Li

    (School of Geographical Science, Shanxi Normal University, Taiyuan 030031, China)

Abstract

Land use/cover change is the main reason for the variation of ecosystem carbon storage. The study of the impact of land use on carbon storage has certain reference values for realizing high-quality development in the Yellow River Basin. In this paper, the InVEST model was used to simulate the variation of carbon storage in the Yellow River Basin in 2000, 2005, 2010, 2015, and 2020, and to predict the carbon storage in 2030 in combination with the CA-Markov model, as well as to discuss the impact of land use on carbon storage. The results showed that: (1) The variation trend of carbon storage for different land use types in the Yellow River Basin was different and was mainly manifested as a decrease of cultivated land and unused land, and an increase of forest land, grassland, water, and construction land. The carbon storage in the provincial key development prioritized zone, national development optimized zone, and provincial development optimized zone showed decreasing trends, while the national key development prioritized zone and national major grain producing zone presented a fluctuating downward trend. (2) The ecosystem carbon storage function weakened after 2000, and part of the carbon sink area transformed into a carbon source area. The area with low carbon storage was distributed in the west of the provincial key ecological function zone, and the area with high carbon storage was concentrated in the south and middle of national key ecological function zone and the east of the provincial key ecological function zone. (3) The carbon loss was largest in the urban expansion scenario (UES), followed by the natural development scenario (NDS) and ecological protection scenario (EPS). The carbon storage of different scenarios presented significant positive correlations with land use intensity.

Suggested Citation

  • Jinfeng Wang & Lingfeng Li & Qing Li & Sheng Wang & Xiaoling Liu & Ya Li, 2022. "The Spatiotemporal Evolution and Prediction of Carbon Storage in the Yellow River Basin Based on the Major Function-Oriented Zone Planning," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7963-:d:851975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7963/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7963/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dik Roth & Michiel Köhne & Elisabet Dueholm Rasch & Madelinde Winnubst, 2021. "After the facts: Producing, using and contesting knowledge in two spatial-environmental conflicts in the Netherlands," Environment and Planning C, , vol. 39(3), pages 626-645, May.
    2. Farihahusnah Hussin & Mohamed Kheireddine Aroua & Mohd Azlan Kassim & Umi Fazara Md. Ali, 2021. "Transforming Plastic Waste into Porous Carbon for Capturing Carbon Dioxide: A Review," Energies, MDPI, vol. 14(24), pages 1-22, December.
    3. Gaglio, Mattias & Aschonitis, Vassilis & Castaldelli, Giuseppe & Fano, Elisa Anna, 2020. "Land use intensification rather than land cover change affects regulating services in the mountainous Adige river basin (Italy)," Ecosystem Services, Elsevier, vol. 45(C).
    4. Lena Mikhelkis & Venkatesh Govindarajan, 2020. "Techno-Economic and Partial Environmental Analysis of Carbon Capture and Storage (CCS) and Carbon Capture, Utilization, and Storage (CCU/S): Case Study from Proposed Waste-Fed District-Heating Inciner," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    5. Yuqing Xu & Fengjin Xiao, 2022. "Assessing Changes in the Value of Forest Ecosystem Services in Response to Climate Change in China," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    6. Wenhui Zhao & Jibin Ma & Zhanyang Wang & Youting Li & Weishi Zhang, 2022. "Potential Hydrogen Market: Value-Added Services Increase Economic Efficiency for Hydrogen Energy Suppliers," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    7. Christian P. Giardina & Michael G. Ryan, 2000. "Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature," Nature, Nature, vol. 404(6780), pages 858-861, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenqiang Zhou & Jinlong Wang & Yu Han & Ling Yang & Huafei Que & Rong Wang, 2023. "Scenario Simulation of the Relationship between Land-Use Changes and Ecosystem Carbon Storage: A Case Study in Dongting Lake Basin, China," IJERPH, MDPI, vol. 20(6), pages 1-19, March.
    2. Lili Geng & Yuanyuan Zhang & Huixian Hui & Yuhan Wang & Yongji Xue, 2023. "Response of Urban Ecosystem Carbon Storage to Land Use/Cover Change and Its Vulnerability Based on Major Function-Oriented Zone Planning," Land, MDPI, vol. 12(8), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Mohammadi & G. Venkatesh & Maria Sandberg & Samieh Eskandari & Stephen Joseph & Karin Granström, 2020. "A Comprehensive Environmental Life Cycle Assessment of the Use of Hydrochar Pellets in Combined Heat and Power Plants," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    2. Paulo A.L.D. Nunes & Helen Ding & Sonja Teelucksingh, 2010. "European Forests and Carbon Sequestration Services: An Economic Assessment of Climate Change Impacts," Working Papers 2010.10, Fondazione Eni Enrico Mattei.
    3. Yimin Li & Xue Yang & Bowen Wu & Juanzhen Zhao & Xuanlun Deng, 2023. "Impervious Surface Mapping Based on Remote Sensing and an Optimized Coupled Model: The Dianchi Basin as an Example," Land, MDPI, vol. 12(6), pages 1-26, June.
    4. Feng Tang & Xu Zhou & Li Wang & Yangjian Zhang & Meichen Fu & Pengtao Zhang, 2021. "Linking Ecosystem Service and MSPA to Construct Landscape Ecological Network of the Huaiyang Section of the Grand Canal," Land, MDPI, vol. 10(9), pages 1-23, August.
    5. Song, Xiaoqing & Wang, Xiong & Hu, Shougeng & Xiao, Renbin & Scheffran, Jürgen, 2022. "Functional transition of cultivated ecosystems: Underlying mechanisms and policy implications in China," Land Use Policy, Elsevier, vol. 119(C).
    6. Muhammad Waseem Rasheed & Jialiang Tang & Abid Sarwar & Suraj Shah & Naeem Saddique & Muhammad Usman Khan & Muhammad Imran Khan & Shah Nawaz & Redmond R. Shamshiri & Marjan Aziz & Muhammad Sultan, 2022. "Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    7. Post, Joachim & Krysanova, Valentina & Suckow, Felicitas & Mirschel, Wilfried & Rogasik, Jutta & Merbach, Ines, 2007. "Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins," Ecological Modelling, Elsevier, vol. 206(1), pages 93-109.
    8. Xiongwen Chen & Wilfred Post & Richard Norby & Aimée Classen, 2011. "Modeling soil respiration and variations in source components using a multi-factor global climate change experiment," Climatic Change, Springer, vol. 107(3), pages 459-480, August.
    9. Yan-Jie Gu & Cheng-Long Han & Meng Kong & Kadambot H. M. Siddique & Feng-Min Li, 2022. "Film Mulching with Low Phosphorus Application Improves Soil Organic Carbon and Its Decomposability in a Semiarid Agroecosystem," Agriculture, MDPI, vol. 12(6), pages 1-17, June.
    10. Tiecheng Huang & Wenjiang Huang & Kun Wang & Yongkang Li & Zhenhai Li & Yong’an Yang, 2022. "Ecosystem Service Value Estimation of Paddy Field Ecosystems Based on Multi-Source Remote Sensing Data," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    11. Wenting Huang & Long Guo & Ting Zhang & Ting Chen & Longqian Chen & Long Li & Xundi Zhang, 2024. "The Impact of Territorial Spatial Transformation on Carbon Storage: A Case Study of Suqian, East China," Land, MDPI, vol. 13(3), pages 1-22, March.
    12. E. Cienciala & Z. Exnerová & J. Macků & V. Henžlík, 2006. "Forest topsoil organic carbon content in Southwest Bohemiaregion," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 52(9), pages 387-398.
    13. Binyu Ren & Qianfeng Wang & Rongrong Zhang & Xiaozhen Zhou & Xiaoping Wu & Qing Zhang, 2022. "Assessment of Ecosystem Services: Spatio-Temporal Analysis and the Spatial Response of Influencing Factors in Hainan Province," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    14. Yuncheng Jiang & Bin Ouyang & Zhigang Yan, 2024. "The Response of Carbon Storage to Multi-Objective Land Use/Cover Spatial Optimization and Vulnerability Assessment," Sustainability, MDPI, vol. 16(6), pages 1-27, March.
    15. Yingxue Li & Zhaoshun Liu & Shujie Li & Xiang Li, 2022. "Multi-Scenario Simulation Analysis of Land Use and Carbon Storage Changes in Changchun City Based on FLUS and InVEST Model," Land, MDPI, vol. 11(5), pages 1-17, April.
    16. Růžičková, Jana & Raclavská, Helena & Juchelková, Dagmar & Kucbel, Marek & Raclavský, Konstantin & Švédová, Barbora & Šafář, Michal & Pfeifer, Christoph & Hrbek, Jitka, 2022. "Organic compounds in the char deposits characterising the combustion of unauthorised fuels in residential boilers," Energy, Elsevier, vol. 257(C).
    17. Vera Marcantonio & Marcello De Falco & Enrico Bocci, 2022. "Non-Thermal Plasma Technology for CO 2 Conversion—An Overview of the Most Relevant Experimental Results and Kinetic Models," Energies, MDPI, vol. 15(20), pages 1-18, October.
    18. Yinan Yang & Jing Li & Li Wang & Zihao Wang & Yun Ling & Jialong Xu & Chenxin Yao & Yiyan Sun & Yuan Wang & Lixia Zhao, 2022. "The Impact of Urbanization on the Relationship between Carbon Storage Supply and Demand in Mega-Urban Agglomerations and Response Measures: A Case of Yangtze River Delta Region, China," IJERPH, MDPI, vol. 19(21), pages 1-22, October.
    19. Helen Ding & Silvia Silvestri & Aline Chiabai & Paulo A.L.D. Nunes, 2010. "A Hybrid Approach to the Valuation of Climate Change Effects on Ecosystem Services: Evidence from the European Forests," Working Papers 2010.50, Fondazione Eni Enrico Mattei.
    20. Latifah M. Alsarhan & Alhanouf S. Alayyar & Naif B. Alqahtani & Nezar H. Khdary, 2021. "Circular Carbon Economy (CCE): A Way to Invest CO 2 and Protect the Environment, a Review," Sustainability, MDPI, vol. 13(21), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7963-:d:851975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.