IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i11p1112-d675083.html
   My bibliography  Save this article

Biochar Reduces the Adverse Effect of Saline Water on Soil Properties and Wheat Production Profitability

Author

Listed:
  • Mohamed E. A. El-sayed

    (Agriculture Research Center, Soils, Water and Environment Research Institute, Giza 12112, Egypt)

  • Mohamed Hazman

    (Agricultural Research Center (ARC), Agricultural Genetic Engineering Research Institute (AGERI), 9 Gamma Street, Giza 12619, Egypt)

  • Ayman Gamal Abd El-Rady

    (Agricultural Research Center, Wheat Research Department, Field Crops Research Institute, Giza 12619, Egypt)

  • Lal Almas

    (Department of Agricultural Sciences, Paul Engler College of Agriculture and Natural Sciences, West Texas A & M University, Canyon, TX 79016, USA)

  • Mike McFarland

    (Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA)

  • Ali Shams El Din

    (Faculty of Agriculture, Benha University, Benha 13511, Egypt)

  • Steve Burian

    (Alabama Water Institute, The University of Alabama, Tuscaloosa, AL 35487, USA)

Abstract

The goal of this study is to assess the use of saline groundwater in combination with soil amendments to increase the efficiency of wheat production in new agricultural soil in Egypt. The experiment was conducted during the two consecutive growing seasons, 2019/2020 and 2020/2021, at the Shandaweel Agricultural Research Station, Sohag, Egypt. In this study, plants of Shandaweel 1 spring bread wheat cultivar were grown under the combinations of the two water treatments, i.e., freshwater (307.2 ppm) and saline water (3000 ppm (NaCl + MgCl 2 )) representing groundwater in Egypt delivered by drip irrigation and the two biochar rates, i.e., zero and 4.8 ton/ha as a soil amendment. The cob corn biochar (CCB) was synthesized by using the slow pyrolysis process (one hour at 350 °C). The results revealed that saline water reduced the grain yield ratio by 8.5%, 11.0%, and 9.7% compared to non-saline water during seasons 2019/2020 and 2020/2021 and over seasons, respectively. Concerning, combined over seasons, the biochar addition enhanced the grain yield by 5.6% and 13.8% compared to non-biochar addition under fresh and saline irrigation water conditions, respectively. Thus, the results indicated and led to a preliminary recommendation that saline groundwater is a viable source of irrigation water and that biochar seemed to alleviate salinity stress on wheat production and in reclaimed soils of Egypt.

Suggested Citation

  • Mohamed E. A. El-sayed & Mohamed Hazman & Ayman Gamal Abd El-Rady & Lal Almas & Mike McFarland & Ali Shams El Din & Steve Burian, 2021. "Biochar Reduces the Adverse Effect of Saline Water on Soil Properties and Wheat Production Profitability," Agriculture, MDPI, vol. 11(11), pages 1-11, November.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1112-:d:675083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/11/1112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/11/1112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    2. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(Supplemen), pages 33-39, January.
    3. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(S1), pages 33-39.
    4. Molden, David J. & Sakthivadivel, Ramasamy & Habib, Zaigham, 2001. "Basin-level use and productivity of water: examples from South Asia," IWMI Research Reports 61099, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    2. Radheshyam Yadav & Wusirika Ramakrishna, 2023. "Biochar as an Environment-Friendly Alternative for Multiple Applications," Sustainability, MDPI, vol. 15(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    2. repec:bla:afrdev:v:29:y:2017:i:s2:p:163-178 is not listed on IDEAS
    3. Li, Guochun & Niu, Wenquan & Ma, Li & Du, Yadan & Zhang, Qian & Gan, Haicheng & Siddique, Kadambot H.M., 2024. "Effects of drip irrigation upper limits on rhizosphere soil bacterial communities, soil organic carbon, and wheat yield," Agricultural Water Management, Elsevier, vol. 293(C).
    4. Timothy Capon & Michael Harris & Andrew Reeson, 2013. "The Design of Markets for Soil Carbon Sequestration," Economic Papers, The Economic Society of Australia, vol. 32(2), pages 161-173, June.
    5. Jayne, T.S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, 2016. "Agricultural Input Subsidy Programs In Africa: An Assessment Of Recent Evidence," Feed the Future Innovation Lab for Food Security Policy Research Papers 259509, Michigan State University, Department of Agricultural, Food, and Resource Economics, Feed the Future Innovation Lab for Food Security (FSP).
    6. Wassenaar, T. & Doelsch, E. & Feder, F. & Guerrin, F. & Paillat, J.-M. & Thuriès, L. & Saint Macary, H., 2014. "Returning Organic Residues to Agricultural Land (RORAL) – Fuelling the Follow-the-Technology approach," Agricultural Systems, Elsevier, vol. 124(C), pages 60-69.
    7. Tran, Dat Q. & Kurkalova, Lyubov A., 2017. "Testing for complementarity between the use of continuous no-till and cover crops: an application of Entropy approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259149, Agricultural and Applied Economics Association.
    8. Dorota Wichrowska & Małgorzata Szczepanek, 2020. "Possibility of Limiting Mineral Fertilization in Potato Cultivation by Using Bio-fertilizer and Its Influence on Protein Content in Potato Tubers," Agriculture, MDPI, vol. 10(10), pages 1-16, September.
    9. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    10. Getnet, Kindie & Mekuria, Wolde & Langan, Simon & Rivington, Mike & Novo, Paula & Black, Helaina, 2017. "Ecosystem-based interventions and farm household welfare in degraded areas: Comparative evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 154(C), pages 53-62.
    11. Yosefin Ari Silvianingsih & Kurniatun Hairiah & Didik Suprayogo & Meine van Noordwijk, 2021. "Kaleka Agroforest in Central Kalimantan (Indonesia): Soil Quality, Hydrological Protection of Adjacent Peatlands, and Sustainability," Land, MDPI, vol. 10(8), pages 1-20, August.
    12. Anna A. Romanovskaya & Vladimir N. Korotkov & Polina D. Polumieva & Alexander A. Trunov & Victoria Yu. Vertyankina & Rodion T. Karaban, 2020. "Greenhouse gas fluxes and mitigation potential for managed lands in the Russian Federation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 661-687, April.
    13. Jianzheng Li & Zhongkui Luo & Yingchun Wang & Hu Li & Hongtao Xing & Ligang Wang & Enli Wang & Hui Xu & Chunyu Gao & Tianzhi Ren, 2019. "Optimizing Nitrogen and Residue Management to Reduce GHG Emissions while Maintaining Crop Yield: A Case Study in a Mono-Cropping System of Northeast China," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    14. Sabine Zikeli & Sabine Gruber & Claus-Felix Teufel & Karin Hartung & Wilhelm Claupein, 2013. "Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management," Sustainability, MDPI, vol. 5(9), pages 1-19, September.
    15. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    16. Nath, Arun Jyoti & Lal, Rattan, 2017. "Managing tropical wetlands for advancing global rice production: Implications for land-use management," Land Use Policy, Elsevier, vol. 68(C), pages 681-685.
    17. Willenbockel, Dirk, 2014. "Reflections on the prospects for pro-poor low-carbon growth," MPRA Paper 69863, University Library of Munich, Germany.
    18. Lybbert, Travis J. & Sumner, Daniel A., 2012. "Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion," Food Policy, Elsevier, vol. 37(1), pages 114-123.
    19. Jayne, Thomas S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, 2018. "Review: Taking stock of Africa’s second-generation agricultural input subsidy programs," Food Policy, Elsevier, vol. 75(C), pages 1-14.
    20. Bethwell, Claudia & Sattler, Claudia & Stachow, Ulrich, 2022. "An analytical framework to link governance, agricultural production practices, and the provision of ecosystem services in agricultural landscapes," Ecosystem Services, Elsevier, vol. 53(C).
    21. Chennault, Carrie M. & Valek, Robert M. & Tyndall, John C. & Schulte, Lisa A., 2020. "PEWI: An interactive web-based ecosystem service model for a broad public audience," Ecological Modelling, Elsevier, vol. 431(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1112-:d:675083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.