IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16511-d998624.html
   My bibliography  Save this article

Straw Bale Building as a Low-Tech Solution: A Case Study in Northern Poland

Author

Listed:
  • Michał Pierzchalski

    (Faculty of Architecture, Warsaw University of Technology, ul. Koszykowa 55, 00-659 Warszawa, Poland)

Abstract

There is a growing interest in low-tech technologies, drawing on the tradition of building with organic and unprocessed materials. One such technology is straw bale constructions. This paper presents an example of a timber-frame building in which straw bales were used as wall filling. The building is located in northern Poland and is a small, year-round single-family dwelling. Based on the available literature and experimental studies, it can be concluded that straw bale technology carries several potential threats related to the selected technology, quality of workmanship, and climatic conditions. The article describes the measurements of the air tightness of the building, the heat transfer coefficient U and the analysis of the humidity of straw walls. The study results confirm the risks related to the low air tightness of the building and the risk of water vapour condensation in the external partitions.

Suggested Citation

  • Michał Pierzchalski, 2022. "Straw Bale Building as a Low-Tech Solution: A Case Study in Northern Poland," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16511-:d:998624
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elżbieta Janowska-Renkas & Anna Król & Sławomir Pochwała & Dawid Pałubski & Małgorzata Adamska & Igor Klementowski, 2022. "The Fire Resistance and Heat Conductivity of Natural Construction Material Based on Straw and Numerical Simulation of Building Energy Demand," Energies, MDPI, vol. 15(3), pages 1-18, February.
    2. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(Supplemen), pages 33-39, January.
    3. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(S1), pages 33-39.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    2. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    3. repec:bla:afrdev:v:29:y:2017:i:s2:p:163-178 is not listed on IDEAS
    4. Li, Guochun & Niu, Wenquan & Ma, Li & Du, Yadan & Zhang, Qian & Gan, Haicheng & Siddique, Kadambot H.M., 2024. "Effects of drip irrigation upper limits on rhizosphere soil bacterial communities, soil organic carbon, and wheat yield," Agricultural Water Management, Elsevier, vol. 293(C).
    5. Timothy Capon & Michael Harris & Andrew Reeson, 2013. "The Design of Markets for Soil Carbon Sequestration," Economic Papers, The Economic Society of Australia, vol. 32(2), pages 161-173, June.
    6. Jayne, T.S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, "undated". "Agricultural Input Subsidy Programs In Africa: An Assessment Of Recent Evidence," Feed the Future Innovation Lab for Food Security Policy Research Papers 259509, Michigan State University, Department of Agricultural, Food, and Resource Economics, Feed the Future Innovation Lab for Food Security (FSP).
    7. Nath, Arun Jyoti & Lal, Rattan, 2017. "Managing tropical wetlands for advancing global rice production: Implications for land-use management," Land Use Policy, Elsevier, vol. 68(C), pages 681-685.
    8. Beata Bień & Anna Grobelak & Jurand Bień & Daria Sławczyk & Kamil Kozłowski & Klaudia Wysokowska & Mateusz Rak, 2025. "Dry Anaerobic Digestion of Selectively Collected Biowaste: Technological Advances, Process Optimization and Energy Recovery Perspectives," Energies, MDPI, vol. 18(17), pages 1-35, August.
    9. Wassenaar, T. & Doelsch, E. & Feder, F. & Guerrin, F. & Paillat, J.-M. & Thuriès, L. & Saint Macary, H., 2014. "Returning Organic Residues to Agricultural Land (RORAL) – Fuelling the Follow-the-Technology approach," Agricultural Systems, Elsevier, vol. 124(C), pages 60-69.
    10. Tran, Dat Q. & Kurkalova, Lyubov A., "undated". "Testing for complementarity between the use of continuous no-till and cover crops: an application of Entropy approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259149, Agricultural and Applied Economics Association.
    11. Willenbockel, Dirk, 2014. "Reflections on the prospects for pro-poor low-carbon growth," MPRA Paper 69863, University Library of Munich, Germany.
    12. Lybbert, Travis J. & Sumner, Daniel A., 2012. "Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion," Food Policy, Elsevier, vol. 37(1), pages 114-123.
    13. Dorota Wichrowska & Małgorzata Szczepanek, 2020. "Possibility of Limiting Mineral Fertilization in Potato Cultivation by Using Bio-fertilizer and Its Influence on Protein Content in Potato Tubers," Agriculture, MDPI, vol. 10(10), pages 1-16, September.
    14. Eszter Tóth & Marianna Magyar & Imre Cseresnyés & Márton Dencső & Annamária Laborczi & Gábor Szatmári & Sándor Koós, 2025. "Climate-Smart Agricultural Practices—Strategies to Conserve and Increase Soil Carbon in Hungary," Land, MDPI, vol. 14(6), pages 1-32, June.
    15. Jayne, Thomas S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, 2018. "Review: Taking stock of Africa’s second-generation agricultural input subsidy programs," Food Policy, Elsevier, vol. 75(C), pages 1-14.
    16. Mohamed E. A. El-sayed & Mohamed Hazman & Ayman Gamal Abd El-Rady & Lal Almas & Mike McFarland & Ali Shams El Din & Steve Burian, 2021. "Biochar Reduces the Adverse Effect of Saline Water on Soil Properties and Wheat Production Profitability," Agriculture, MDPI, vol. 11(11), pages 1-11, November.
    17. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    18. Getnet, Kindie & Mekuria, Wolde & Langan, Simon & Rivington, Mike & Novo, Paula & Black, Helaina, 2017. "Ecosystem-based interventions and farm household welfare in degraded areas: Comparative evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 154(C), pages 53-62.
    19. Bethwell, Claudia & Sattler, Claudia & Stachow, Ulrich, 2022. "An analytical framework to link governance, agricultural production practices, and the provision of ecosystem services in agricultural landscapes," Ecosystem Services, Elsevier, vol. 53(C).
    20. Yosefin Ari Silvianingsih & Kurniatun Hairiah & Didik Suprayogo & Meine van Noordwijk, 2021. "Kaleka Agroforest in Central Kalimantan (Indonesia): Soil Quality, Hydrological Protection of Adjacent Peatlands, and Sustainability," Land, MDPI, vol. 10(8), pages 1-20, August.
    21. Miftha Beshir & Nicolas Brüggemann & Fantaw Yimer & Menfese Tadesse & Björn Thiele & Diana Hofmann, 2023. "Polycyclic Aromatic Hydrocarbons (PAHs) and Bis(2-ethylhexyl) Phthalate (BEHP) in the Soil of Teff- Acacia decurrens -Charcoal Production System in Northern Ethiopia," Land, MDPI, vol. 12(12), pages 1-14, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16511-:d:998624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.