IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7537-d843823.html
   My bibliography  Save this article

Can Energy Efficiency Help in Achieving Carbon-Neutrality Pledges? A Developing Country Perspective Using Dynamic ARDL Simulations

Author

Listed:
  • Md. Emran Hossain

    (Department of Agricultural Finance and Banking, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh)

  • Soumen Rej

    (Vinod Gupta School of Management, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India)

  • Sourav Mohan Saha

    (Department of Agricultural Finance, Co-Operatives and Banking, Khulna Agricultural University, Khulna 9100, Bangladesh)

  • Joshua Chukwuma Onwe

    (Department of Economics and Development Studies, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki P.M.B. 1010, Ebonyi State, Nigeria)

  • Nnamdi Nwulu

    (Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa)

  • Festus Victor Bekun

    (Faculty of Economics Administrative and Social Sciences, Istanbul Gelisim University, Istanbul 34310, Turkey
    Adnan Kassar School of Business, Lebanese American University, Beirut 1102-2801, Lebanon)

  • Amjad Taha

    (Banking and Finance Department, Eastern Mediterranean University, North Cyprus, Via Mersin 10, Famagusta 99628, Turkey)

Abstract

The current research sheds light on the nexus between environmental degradation as proxied by carbon dioxide emissions (CO 2 ), energy efficiency (EE), economic growth, manufacturing value-added (MVA), and the interaction effect of EE and MVA in India. Using yearly data from 1980 to 2019, the current study employs dynamic auto-regressive distribution lag (DARDL) simulations and Fourier Toda and Yamamoto causality techniques. The findings of DARDL reveal that as income and MVA rise, environmental quality decreases, while EE improves environmental conditions in both the long and short run. Surprisingly, the interaction term of EE and MVA has a detrimental influence on environmental quality, meaning that India remains unable to provide energy savings technologies to the manufacturing industry. Furthermore, the environmental Kuznets curve (EKC) hypothesis is well-founded for India, as the long-run income coefficient is smaller than the short-run coefficient, implying that India is in its scale stage of economy, where economic growth is prioritized over environmental quality. The results of the causality technique reveal that CO 2 emissions and EE have a bidirectional association. Therefore, policymakers in India should embrace realistic industrialization strategies combined with moderate decarbonization and energy efficiency initiatives under the umbrella of sustainable industrial and economic growth.

Suggested Citation

  • Md. Emran Hossain & Soumen Rej & Sourav Mohan Saha & Joshua Chukwuma Onwe & Nnamdi Nwulu & Festus Victor Bekun & Amjad Taha, 2022. "Can Energy Efficiency Help in Achieving Carbon-Neutrality Pledges? A Developing Country Perspective Using Dynamic ARDL Simulations," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7537-:d:843823
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nazlioglu, Saban & Gormus, N. Alper & Soytas, Uğur, 2016. "Oil prices and real estate investment trusts (REITs): Gradual-shift causality and volatility transmission analysis," Energy Economics, Elsevier, vol. 60(C), pages 168-175.
    2. Tajudeen, Ibrahim A., 2015. "Examining the role of energy efficiency and non-economic factors in energy demand and CO2 emissions in Nigeria: Policy implications," Energy Policy, Elsevier, vol. 86(C), pages 338-350.
    3. Destek, Mehmet & Sinha, Avik, 2020. "Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic Co-operation and development countries," MPRA Paper 104246, University Library of Munich, Germany, revised 2020.
    4. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    5. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    6. Ming Yang & Xin Yu, 2017. "Energy efficiency to mitigate carbon emissions: strategies of China and the USA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 1-14, January.
    7. Abbasi, Kashif Raza & Hussain, Khadim & Redulescu, Magdalena & Ozturk, Ilhan, 2021. "Does natural resources depletion and economic growth achieve the carbon neutrality target of the UK? A way forward towards sustainable development," Resources Policy, Elsevier, vol. 74(C).
    8. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    9. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    10. Ozcan, Burcu, 2013. "The nexus between carbon emissions, energy consumption and economic growth in Middle East countries: A panel data analysis," Energy Policy, Elsevier, vol. 62(C), pages 1138-1147.
    11. Tajudeen, Ibrahim A. & Wossink, Ada & Banerjee, Prasenjit, 2018. "How significant is energy efficiency to mitigate CO2 emissions? Evidence from OECD countries," Energy Economics, Elsevier, vol. 72(C), pages 200-221.
    12. Panayotou, Theodore, 1997. "Demystifying the environmental Kuznets curve: turning a black box into a policy tool," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 465-484, November.
    13. Rabnawaz Khan, 2021. "Beta decoupling relationship between CO2 emissions by GDP, energy consumption, electricity production, value-added industries, and population in China," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-22, April.
    14. Narayan, Paresh Kumar & Narayan, Seema, 2010. "Carbon dioxide emissions and economic growth: Panel data evidence from developing countries," Energy Policy, Elsevier, vol. 38(1), pages 661-666, January.
    15. Shafik, Nemat, 1994. "Economic Development and Environmental Quality: An Econometric Analysis," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 757-773, Supplemen.
    16. Pata, Ugur Korkut & Isik, Cem, 2021. "Determinants of the load capacity factor in China: A novel dynamic ARDL approach for ecological footprint accounting," Resources Policy, Elsevier, vol. 74(C).
    17. Soren Jordan & Andrew Q. Philips, 2018. "Cointegration testing and dynamic simulations of autoregressive distributed lag modelsJournal: Stata Journal," Stata Journal, StataCorp LP, vol. 18(4), pages 902-923, December.
    18. Chen, Jiandong & Wang, Ping & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2018. "Decomposition and decoupling analysis of CO2 emissions in OECD," Applied Energy, Elsevier, vol. 231(C), pages 937-950.
    19. Aliya Zhakanova Isiksal, 2021. "The financial sector expansion effect on renewable electricity production: case of the BRICS countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9029-9051, June.
    20. Rajbhandari, Ashish & Zhang, Fan, 2018. "Does energy efficiency promote economic growth? Evidence from a multicountry and multisectoral panel dataset," Energy Economics, Elsevier, vol. 69(C), pages 128-139.
    21. Awan, Ashar & Abbasi, Kashif Raza & Rej, Soumen & Bandyopadhyay, Arunava & Lv, Kangjuan, 2022. "The impact of renewable energy, internet use and foreign direct investment on carbon dioxide emissions: A method of moments quantile analysis," Renewable Energy, Elsevier, vol. 189(C), pages 454-466.
    22. Fırat Emir & Festus Victor Bekun, 2019. "Energy intensity, carbon emissions, renewable energy, and economic growth nexus: New insights from Romania," Energy & Environment, , vol. 30(3), pages 427-443, May.
    23. Mirza, Faisal Mehmood & Sinha, Avik & Khan, Javeria Rehman & Kalugina, Olga A. & Zafar, Muhammad Wasif, 2022. "Impact of Energy Efficiency on CO2 Emissions: Empirical Evidence from Developing Countries," MPRA Paper 111923, University Library of Munich, Germany, revised 2022.
    24. Özbuğday, Fatih Cemil & Erbas, Bahar Celikkol, 2015. "How effective are energy efficiency and renewable energy in curbing CO2 emissions in the long run? A heterogeneous panel data analysis," Energy, Elsevier, vol. 82(C), pages 734-745.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soumen Rej & Barnali Nag & Md. Emran Hossain, 2022. "Can Renewable Energy and Export Help in Reducing Ecological Footprint of India? Empirical Evidence from Augmented ARDL Co-Integration and Dynamic ARDL Simulations," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    2. Hossain, Mohammad Razib & Rej, Soumen & Awan, Ashar & Bandyopadhyay, Arunava & Islam, Md Sayemul & Das, Narasingha & Hossain, Md Emran, 2023. "Natural resource dependency and environmental sustainability under N-shaped EKC: The curious case of India," Resources Policy, Elsevier, vol. 80(C).
    3. Harin Tiawon & Miar Miar, 2023. "The Role of Renewable Energy Production, Energy Efficiency and Green Finance in Achieving Sustainable Economic Development: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 250-260, January.
    4. Nan Wang & Quan Yang & Cuixia Zhang, 2022. "Data-Driven Low-Carbon Control Method of Machining Process—Taking Axle as an Example," Sustainability, MDPI, vol. 14(21), pages 1-10, October.
    5. Mingxia Shi & Yibo Wang, 2023. "Do Green Transfer Payments Contribute to Carbon Emission Reduction?," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    6. Rui Liang & Xichuan Zheng & Jia Liang & Linhui Hu, 2023. "Energy Efficiency Model Construction of Building Carbon Neutrality Design," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    7. Yang Yu & Magdalena Radulescu & Abanum Innocent Ifelunini & Stephen Obinozie Ogwu & Joshua Chukwuma Onwe & Atif Jahanger, 2022. "Achieving Carbon Neutrality Pledge through Clean Energy Transition: Linking the Role of Green Innovation and Environmental Policy in E7 Countries," Energies, MDPI, vol. 15(17), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossain, Md. Emran & Islam, Md. Sayemul & Bandyopadhyay, Arunava & Awan, Ashar & Hossain, Mohammad Razib & Rej, Soumen, 2022. "Mexico at the crossroads of natural resource dependence and COP26 pledge: Does technological innovation help?," Resources Policy, Elsevier, vol. 77(C).
    2. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    3. Zhang, Jinjun & Abbasi, Kashif Raza & Hussain, Khadim & Akram, Sabahat & Alvarado, Rafael & Almulhim, Abdulaziz I., 2022. "Another perspective towards energy consumption factors in Pakistan: Fresh policy insights from novel methodological framework," Energy, Elsevier, vol. 249(C).
    4. Soumen Rej & Barnali Nag & Md. Emran Hossain, 2022. "Can Renewable Energy and Export Help in Reducing Ecological Footprint of India? Empirical Evidence from Augmented ARDL Co-Integration and Dynamic ARDL Simulations," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    5. Iftikhar Yasin & Nawaz Ahmad & M. Aslam Chaudhary, 2020. "Catechizing the Environmental-Impression of Urbanization, Financial Development, and Political Institutions: A Circumstance of Ecological Footprints in 110 Developed and Less-Developed Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 621-649, January.
    6. Quan-Hoang Vuong & Manh-Tung Ho & Hong-Kong To Nguyen & Minh-Hoang Nguyen, 2019. "The trilemma of sustainable industrial growth: evidence from a piloting OECD’s Green city," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-14, December.
    7. Onafowora, Olugbenga A. & Owoye, Oluwole, 2014. "Bounds testing approach to analysis of the environment Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 44(C), pages 47-62.
    8. Saboori, Behnaz & Sulaiman, Jamalludin & Mohd, Saidatulakmal, 2012. "Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve," Energy Policy, Elsevier, vol. 51(C), pages 184-191.
    9. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    10. Maxwell Chukwudi Udeagha & Marthinus Christoffel Breitenbach, 2023. "The Role of Fiscal Decentralization in Limiting CO2 Emissions in South Africa," Biophysical Economics and Resource Quality, Springer, vol. 8(3), pages 1-30, September.
    11. Yugang He, 2022. "Renewable and Non-Renewable Energy Consumption and Trade Policy: Do They Matter for Environmental Sustainability?," Energies, MDPI, vol. 15(10), pages 1-17, May.
    12. Esteve, Vicente & Tamarit, Cecilio, 2012. "Threshold cointegration and nonlinear adjustment between CO2 and income: The Environmental Kuznets Curve in Spain, 1857–2007," Energy Economics, Elsevier, vol. 34(6), pages 2148-2156.
    13. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    14. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    15. Zhou, Runyu & Abbasi, Kashif Raza & Salem, Sultan & Almulhim, Abdulaziz.I. & Alvarado, Rafael, 2022. "Do natural resources, economic growth, human capital, and urbanization affect the ecological footprint? A modified dynamic ARDL and KRLS approach," Resources Policy, Elsevier, vol. 78(C).
    16. Shokoohi, Zeinab & Dehbidi, Navid Kargar & Tarazkar, Mohammad Hassan, 2022. "Energy intensity, economic growth and environmental quality in populous Middle East countries," Energy, Elsevier, vol. 239(PC).
    17. Ofori, Isaac K. & Gbolonyo, Emmanuel & Ojong, Nathanael, 2022. "Towards Inclusive Green Growth in Africa: Critical energy efficiency synergies and governance thresholds," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 365, pages 1-48.
    18. Hossain, Mohammad Razib & Rej, Soumen & Awan, Ashar & Bandyopadhyay, Arunava & Islam, Md Sayemul & Das, Narasingha & Hossain, Md Emran, 2023. "Natural resource dependency and environmental sustainability under N-shaped EKC: The curious case of India," Resources Policy, Elsevier, vol. 80(C).
    19. Ben Jebli, Mehdi & Ben Youssef, Slim, 2015. "The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 173-185.
    20. Shahbaz, Muhammad & Shahzad, Syed Jawad Hussain & Kumar, Mantu, 2017. "Is Globalization Detrimental to CO2 Emissions in Japan? New Threshold Analysis," MPRA Paper 82413, University Library of Munich, Germany, revised 03 Nov 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7537-:d:843823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.