IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1712-d493939.html
   My bibliography  Save this article

Economic Analysis of Measures for GHG Emission Reduction

Author

Listed:
  • Jasmina Ćetković

    (Faculty of Economics Podgorica, University of Montenegro, 81000 Podgorica, Montenegro)

  • Slobodan Lakić

    (Faculty of Economics Podgorica, University of Montenegro, 81000 Podgorica, Montenegro)

  • Angelina Živković

    (Ministry of Transport and Maritime Affairs, 81000 Podgorica, Montenegro)

  • Miloš Žarković

    (Faculty of Economics Podgorica, University of Montenegro, 81000 Podgorica, Montenegro)

  • Radoje Vujadinović

    (Faculty of Mechanical Engineering, University of Montenegro, 81000 Podgorica, Montenegro)

Abstract

The European Union, as a signatory to the Paris Agreement, has approached the action against greenhouse gas (GHG) emissions and climate change quite ambitiously, striving to achieve climate neutrality by 2050. Extension of the European Green Deal policy implementation to the Western Balkans can only increase the chances of the climate neutral agenda. Expectations from Montenegro in the coming period are transposable to other Western Balkans countries as they are urged to start implementing the Paris Agreement by establishing appropriate policies and measures. In this regard, this paper presents the analysis of the financial and economic analysis results of measures to reduce GHG emissions in Montenegro. With this respect, least cost analysis—cost effectiveness analysis and cost–benefit analysis were conducted. The analysis results indicated that due to the thermal power plant reconstruction, increased use of renewable energy sources and measures to increase energy efficiency, the largest reduction in GHG emissions in Montenegro in the next 10 years is expected in the energy sector.

Suggested Citation

  • Jasmina Ćetković & Slobodan Lakić & Angelina Živković & Miloš Žarković & Radoje Vujadinović, 2021. "Economic Analysis of Measures for GHG Emission Reduction," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1712-:d:493939
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chengliang Zhang & Tong Xu & Hualiang Feng & Shaohua Chen, 2019. "Greenhouse Gas Emissions from Landfills: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    2. David Pearce, 2003. "The Social Cost of Carbon and its Policy Implications," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 19(3), pages 362-384.
    3. Bollen, Johannes & van der Zwaan, Bob & Brink, Corjan & Eerens, Hans, 2009. "Local air pollution and global climate change: A combined cost-benefit analysis," Resource and Energy Economics, Elsevier, vol. 31(3), pages 161-181, August.
    4. Xavier D'Haultfœuille & Pauline Givord & Xavier Boutin, 2014. "The Environmental Effect of Green Taxation: The Case of the French Bonus/Malus," Economic Journal, Royal Economic Society, vol. 124(578), pages 444-480, August.
    5. Hartmann, Dominik & Guevara, Miguel R. & Jara-Figueroa, Cristian & Aristarán, Manuel & Hidalgo, César A., 2017. "Linking Economic Complexity, Institutions, and Income Inequality," World Development, Elsevier, vol. 93(C), pages 75-93.
    6. Kim, Jiwon & Park, Sangchan, 2018. "A contingent approach to energy mix policy," Energy Policy, Elsevier, vol. 123(C), pages 749-758.
    7. David Meunier & Emile Quinet, 2015. "Valuing Greenhouse Gases Emissions and Uncertainty in Transport Cost Benefit Analysis," Post-Print halshs-01207235, HAL.
    8. Bollen, Johannes & Hers, Sebastiaan & van der Zwaan, Bob, 2010. "An integrated assessment of climate change, air pollution, and energy security policy," Energy Policy, Elsevier, vol. 38(8), pages 4021-4030, August.
    9. Tamma Carleton & Amir Jina & Michael Delgado & Michael Greenstone & Trevor Houser & Solomon Hsiang & Andrew Hultgren & Robert E Kopp & Kelly E McCusker & Ishan Nath & James Rising & Ashwin Rode & Hee , 2023. "Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(4), pages 2037-2105.
    10. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    11. Guo, Pibin & Wang, Ting & Li, Dan & Zhou, Xijun, 2016. "How energy technology innovation affects transition of coal resource-based economy in China," Energy Policy, Elsevier, vol. 92(C), pages 1-6.
    12. Ciccone, Alice, 2018. "Environmental effects of a vehicle tax reform: Empirical evidence from Norway," Transport Policy, Elsevier, vol. 69(C), pages 141-157.
    13. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    14. Olimpia Neagu & Mircea Constantin Teodoru, 2019. "The Relationship between Economic Complexity, Energy Consumption Structure and Greenhouse Gas Emission: Heterogeneous Panel Evidence from the EU Countries," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    15. Sprei, Frances & Karlsson, Sten, 2013. "Energy efficiency versus gains in consumer amenities—An example from new cars sold in Sweden," Energy Policy, Elsevier, vol. 53(C), pages 490-499.
    16. Emanuele Campiglio & Yannis Dafermos & Pierre Monnin & Josh Ryan-Collins & Guido Schotten & Misa Tanaka, 2018. "Climate change challenges for central banks and financial regulators," Nature Climate Change, Nature, vol. 8(6), pages 462-468, June.
    17. David Meunier & Emile Quinet, 2015. "Valuing Greenhouse Gases Emissions and Uncertainty in Transport Cost Benefit Analysis," PSE-Ecole d'économie de Paris (Postprint) halshs-01207235, HAL.
    18. Olja Čokorilo & Ivan Ivković & Snežana Kaplanović, 2019. "Prediction of Exhaust Emission Costs in Air and Road Transportation," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    19. Diakoulaki, D. & Karangelis, F., 2007. "Multi-criteria decision analysis and cost-benefit analysis of alternative scenarios for the power generation sector in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 716-727, May.
    20. Santamaría, Marta & Azqueta, Diego, 2015. "Promoting biofuels use in Spain: A cost-benefit analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1415-1424.
    21. Cavill, Nick & Kahlmeier, Sonja & Rutter, Harry & Racioppi, Francesca & Oja, Pekka, 2008. "Economic analyses of transport infrastructure and policies including health effects related to cycling and walking: A systematic review," Transport Policy, Elsevier, vol. 15(5), pages 291-304, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    2. Marcin Olkiewicz & Anna Olkiewicz & Radosław Wolniak & Adam Wyszomirski, 2021. "Effects of Pro-Ecological Investments on an Example of the Heating Industry—Case Study," Energies, MDPI, vol. 14(18), pages 1-24, September.
    3. Agnieszka Ociepa-Kubicka & Iwona Deska & Ewa Ociepa, 2021. "Organizations towards the Evaluation of Environmental Management Tools ISO 14001 and EMAS," Energies, MDPI, vol. 14(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yunpeng & Bao, Qun & Siao-Yun, Wei & Islam, Misbah ul & Razzaq, Asif, 2022. "Renewable energy transition and environmental sustainability through economic complexity in BRICS countries: Fresh insights from novel Method of Moments Quantile regression," Renewable Energy, Elsevier, vol. 184(C), pages 1165-1176.
    2. Buhari Doğan & Oana M. Driha & Daniel Balsalobre Lorente & Umer Shahzad, 2021. "The mitigating effects of economic complexity and renewable energy on carbon emissions in developed countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 1-12, January.
    3. Olimpia Neagu & Mircea Constantin Teodoru, 2019. "The Relationship between Economic Complexity, Energy Consumption Structure and Greenhouse Gas Emission: Heterogeneous Panel Evidence from the EU Countries," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    4. Anthony G. Patt & Elke U. Weber, 2014. "Perceptions and communication strategies for the many uncertainties relevant for climate policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 5(2), pages 219-232, March.
    5. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    6. Kazemzadeh, Emad & Fuinhas, José Alberto & Koengkan, Matheus & Shadmehri, Mohammad Taher Ahmadi, 2023. "Relationship between the share of renewable electricity consumption, economic complexity, financial development, and oil prices: A two-step club convergence and PVAR model approach," International Economics, Elsevier, vol. 173(C), pages 260-275.
    7. Tol, Richard S.J. & Yohe, Gary W., 2009. "The Stern Review: A deconstruction," Energy Policy, Elsevier, vol. 37(3), pages 1032-1040, March.
    8. Diogo Ferraz & Fernanda P. S. Falguera & Enzo B. Mariano & Dominik Hartmann, 2021. "Linking Economic Complexity, Diversification, and Industrial Policy with Sustainable Development: A Structured Literature Review," Sustainability, MDPI, vol. 13(3), pages 1-29, January.
    9. Lechón, Y. & de la Rúa, C. & Rodríguez, I. & Caldés, N., 2019. "Socioeconomic implications of biofuels deployment through an Input-Output approach. A case study in Uruguay," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 178-191.
    10. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    11. Fleurbaey, Marc & Zuber, Stéphane, 2015. "Discounting, risk and inequality: A general approach," Journal of Public Economics, Elsevier, vol. 128(C), pages 34-49.
    12. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    13. Ikefuji, M. & Magnus, J.R. & Sakamoto, H., 2010. "Climate Change, Economic Growth, and Health," Discussion Paper 2010-86, Tilburg University, Center for Economic Research.
    14. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    15. Traeger, Christian, 2021. "ACE - Analytic Climate Economy," CEPR Discussion Papers 15968, C.E.P.R. Discussion Papers.
    16. Kazushi Hatase & Shunsuke Managi, 2015. "Increase in carbon prices: analysis of energy-economy modeling," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(2), pages 241-262, April.
    17. Jussi Lintunen & Lauri Vilmi, 2021. "Optimal Emission Prices Over the Business Cycles," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(1), pages 135-167, September.
    18. Dieckhoener, Caroline & Hecking, Harald, 2012. "Greenhouse Gas Abatement Cost Curves of the Residential Heating Market – a Microeconomic Approach," EWI Working Papers 2012-16, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    19. Zhang, Hong & Jin, Gui & Zhang, Zhengyu, 2021. "Coupling system of carbon emission and social economy: A review," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    20. Espinosa, María Paz & Pizarro-Irizar, Cristina, 2018. "Is renewable energy a cost-effective mitigation resource? An application to the Spanish electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 902-914.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1712-:d:493939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.