IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12672-d680422.html
   My bibliography  Save this article

Achieving Sustainable Mobility in the Szczecin Metropolitan Area in the Post-COVID-19 Era: The DEMATEL and PROMETHEE II Approach

Author

Listed:
  • Witold Torbacki

    (Faculty of Engineering and Economics of Transport, Maritime University of Szczecin, 70-507 Szczecin, Poland)

Abstract

This article presents the idea of modelling and supporting the decision-making process in the field of development directions of a sustainable transport system in a metropolitan area. The global COVID-19 pandemic is causing changes in the perception of the public transport system by passengers. Users’ concerns for their own safety may lead to a shift away from public transport. Policy makers are advised to pay attention to these new phenomena that are hindering the development of sustainable transport in urban areas. Thus, many projects for the development of sustainable urban transport mobility, prepared before COVID-19, require re-analysis and adaptation to the decision-making processes of choosing the preferred means of transport by citizens. The scientific aim of this article was to develop a mathematical model based on the hybrid DEMATEL-PROMETHEE II method, supporting city decision-makers in the decision-making process regarding the selection of appropriate measures supporting the development of sustainable transport. The issues covered in the article include economic, informational and legal aspects, including electromobility, the principles of a low-emission society, and sustainable collective transport. The model was prepared for the needs of the Szczecin Metropolitan Area, where the construction of the Szczecin Metropolitan Railway, delayed by COVID-19, is underway and is to be the main axis of the public transport system. Finally, the article provides a ranking of groups of measures, dimensions and criteria that should be taken into account by decision-makers and planners in the modified plans for the sustainable development of metropolitan transport systems in the period after COVID-19.

Suggested Citation

  • Witold Torbacki, 2021. "Achieving Sustainable Mobility in the Szczecin Metropolitan Area in the Post-COVID-19 Era: The DEMATEL and PROMETHEE II Approach," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12672-:d:680422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12672/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12672/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duran-Rodas, David & Villeneuve, Dominic & Pereira, Francisco C. & Wulfhorst, Gebhard, 2020. "How fair is the allocation of bike-sharing infrastructure? Framework for a qualitative and quantitative spatial fairness assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 299-319.
    2. Basu, Rounaq & Ferreira, Joseph, 2021. "Sustainable mobility in auto-dominated Metro Boston: Challenges and opportunities post-COVID-19," Transport Policy, Elsevier, vol. 103(C), pages 197-210.
    3. Mustafa Hamurcu & Tamer Eren, 2020. "Strategic Planning Based on Sustainability for Urban Transportation: An Application to Decision-Making," Sustainability, MDPI, vol. 12(9), pages 1-24, April.
    4. Santos, Georgina & Rembalski, Sebastian, 2021. "Do electric vehicles need subsidies in the UK?," Energy Policy, Elsevier, vol. 149(C).
    5. Tiziana Campisi & Socrates Basbas & Anastasios Skoufas & Nurten Akgün & Dario Ticali & Giovanni Tesoriere, 2020. "The Impact of COVID-19 Pandemic on the Resilience of Sustainable Mobility in Sicily," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    6. Krystian Pietrzak & Oliwia Pietrzak, 2021. "Can the Metropolitan Rail System Hamper the Development of Individual Transport? (Case Study on the Example of the Szczecin Metropolitan Railway, Szczecin, Poland)," Springer Proceedings in Business and Economics, in: Michal Suchanek (ed.), Transport Development Challenges in the 21st Century, pages 181-192, Springer.
    7. Chen, Xing & Lin, Boqiang, 2021. "Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China," Energy Policy, Elsevier, vol. 157(C).
    8. Ortega-Cabezas, Pedro-Miguel & Colmenar-Santos, Antonio & Borge-Diez, David & Blanes-Peiró, Jorge-Juan, 2021. "Can eco-routing, eco-driving and eco-charging contribute to the European Green Deal? Case Study: The City of Alcalá de Henares (Madrid, Spain)," Energy, Elsevier, vol. 228(C).
    9. Frondel, Manuel & Schubert, Stefanie A., 2021. "Carbon pricing in Germany's road transport and housing sector: Options for reimbursing carbon revenues," Energy Policy, Elsevier, vol. 157(C).
    10. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "The bi-objective Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 464-478.
    11. Li, Tao & Rong, Lili & Zhang, Anming, 2021. "Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail," Transport Policy, Elsevier, vol. 106(C), pages 226-238.
    12. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    13. Ecer, Fatih, 2021. "A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Awad-Núñez, Samir & Julio, Raky & Moya-Gómez, Borja & Gomez, Juan & Sastre González, Julián, 2021. "Acceptability of sustainable mobility policies under a post-COVID-19 scenario. Evidence from Spain," Transport Policy, Elsevier, vol. 106(C), pages 205-214.
    15. Panah, Payam Ghaebi & Bornapour, Mosayeb & Hemmati, Reza & Guerrero, Josep M., 2021. "Charging station Stochastic Programming for Hydrogen/Battery Electric Buses using Multi-Criteria Crow Search Algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Kilic, Huseyin Selcuk & Yalcin, Ahmet Selcuk, 2021. "Comparison of municipalities considering environmental sustainability via neutrosophic DEMATEL based TOPSIS," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    17. Braga, Irina F.B. & Ferreira, Fernando A.F. & Ferreira, João J.M. & Correia, Ricardo J.C. & Pereira, Leandro F. & Falcão, Pedro F., 2021. "A DEMATEL analysis of smart city determinants," Technology in Society, Elsevier, vol. 66(C).
    18. Zhang, Yunchang & Fricker, Jon D., 2021. "Quantifying the impact of COVID-19 on non-motorized transportation: A Bayesian structural time series model," Transport Policy, Elsevier, vol. 103(C), pages 11-20.
    19. Yalcin, Ahmet Selcuk & Kilic, Huseyin Selcuk & Delen, Dursun, 2022. "The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    20. Cheng, Ya & Sinha, Avik & Ghosh, Vinit & Sengupta, Tuhin & Luo, Huawei, 2021. "Carbon Tax and Energy Innovation at Crossroads of Carbon Neutrality: Designing a Sustainable Decarbonization Policy," MPRA Paper 108185, University Library of Munich, Germany, revised 2021.
    21. Maria Cieśla & Aleksander Sobota & Marianna Jacyna, 2020. "Multi-Criteria Decision Making Process in Metropolitan Transport Means Selection Based on the Sharing Mobility Idea," Sustainability, MDPI, vol. 12(17), pages 1-21, September.
    22. Tzeng, Gwo-Hshiung & Lin, Cheng-Wei & Opricovic, Serafim, 2005. "Multi-criteria analysis of alternative-fuel buses for public transportation," Energy Policy, Elsevier, vol. 33(11), pages 1373-1383, July.
    23. Caballini, Claudia & Agostino, Matteo & Dalla Chiara, Bruno, 2021. "Physical mobility and virtual communication in Italy: Trends, analytical relationships and policies for the post COVID-19," Transport Policy, Elsevier, vol. 110(C), pages 314-334.
    24. Li, Haojie & Zhang, Yingheng & Zhu, Manman & Ren, Gang, 2021. "Impacts of COVID-19 on the usage of public bicycle share in London," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 140-155.
    25. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    26. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    27. Corazza, Maria Vittoria & Musso, Antonio, 2021. "Urban transport policies in the time of pandemic, and after: An ARDUOUS research agenda," Transport Policy, Elsevier, vol. 103(C), pages 31-44.
    28. Mulliner, Emma & Malys, Naglis & Maliene, Vida, 2016. "Comparative analysis of MCDM methods for the assessment of sustainable housing affordability," Omega, Elsevier, vol. 59(PB), pages 146-156.
    29. Griffiths, S. & Furszyfer Del Rio, D. & Sovacool, B., 2021. "Policy mixes to achieve sustainable mobility after the COVID-19 crisis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    30. Vickerman, Roger, 2021. "Will Covid-19 put the public back in public transport? A UK perspective," Transport Policy, Elsevier, vol. 103(C), pages 95-102.
    31. Banister, David, 2008. "The sustainable mobility paradigm," Transport Policy, Elsevier, vol. 15(2), pages 73-80, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yalcin, Ahmet Selcuk & Kilic, Huseyin Selcuk & Delen, Dursun, 2022. "The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    2. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    3. Bagdatli, Muhammed Emin Cihangir & Ipek, Fatima, 2022. "Transport mode preferences of university students in post-COVID-19 pandemic," Transport Policy, Elsevier, vol. 118(C), pages 20-32.
    4. Maria Cieśla & Sandra Kuśnierz & Oliwia Modrzik & Sonia Niedośpiał & Patrycja Sosna, 2021. "Scenarios for the Development of Polish Passenger Transport Services in Pandemic Conditions," Sustainability, MDPI, vol. 13(18), pages 1-16, September.
    5. Mir Seyed Mohammad Mohsen Emamat & Caroline Maria de Miranda Mota & Mohammad Reza Mehregan & Mohammad Reza Sadeghi Moghadam & Philippe Nemery, 2022. "Using ELECTRE-TRI and FlowSort methods in a stock portfolio selection context," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
    6. Wang, Chunan & Jiang, Changmin, 2022. "How do pandemics affect intercity air travel? Implications for traffic and environment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 330-353.
    7. Mustafa Hamurcu & Tamer Eren, 2020. "Strategic Planning Based on Sustainability for Urban Transportation: An Application to Decision-Making," Sustainability, MDPI, vol. 12(9), pages 1-24, April.
    8. Jingyuan Shi & Jiaqing Sun, 2023. "Prefabrication Implementation Potential Evaluation in Rural Housing Based on Entropy Weighted TOPSIS Model: A Case Study of Counties in Chongqing, China," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    9. Heidary Dahooie, Jalil & Qorbani, Ali Reza & Daim, Tugrul, 2021. "Providing a framework for selecting the appropriate method of technology acquisition considering uncertainty in hierarchical group decision-making: Case Study: Interactive television technology," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    10. Huchang Liao & Xiaomei Mi & Zeshui Xu, 2020. "A survey of decision-making methods with probabilistic linguistic information: bibliometrics, preliminaries, methodologies, applications and future directions," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 81-134, March.
    11. Sarfaraz Hashemkhani Zolfani & Ramin Bazrafshan & Fatih Ecer & Çağlar Karamaşa, 2022. "The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    12. Kuang-Hua Hu & Wei Jianguo & Gwo-Hshiung Tzeng, 2017. "Risk Factor Assessment Improvement for China’s Cloud Computing Auditing Using a New Hybrid MADM Model," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 737-777, May.
    13. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    14. Hisham Alidrisi, 2021. "An Innovative Job Evaluation Approach Using the VIKOR Algorithm," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    15. Büyüközkan, Gülçin & Ruan, Da, 2008. "Evaluation of software development projects using a fuzzy multi-criteria decision approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(5), pages 464-475.
    16. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    17. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    18. Ioannis Sitaridis & Fotis Kitsios, 2020. "Competitiveness analysis and evaluation of entrepreneurial ecosystems: a multi-criteria approach," Annals of Operations Research, Springer, vol. 294(1), pages 377-399, November.
    19. Sirirat Sae Lim & Hong Ngoc Nguyen & Chia-Li Lin, 2022. "Exploring the Development Strategies of Science Parks Using the Hybrid MCDM Approach," Sustainability, MDPI, vol. 14(7), pages 1-29, April.
    20. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12672-:d:680422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.