IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6738-d574789.html
   My bibliography  Save this article

Bibliometric Network Analysis of “Water Systems’ Adaptation to Climate Change Uncertainties”: Concepts, Approaches, Gaps, and Opportunities

Author

Listed:
  • Aymen Sawassi

    (International Center for Advanced Mediterranean Agronomic Studies, Mediterranean Agronomic Institute of Bari, Via Ceglie 9, 70010 Valenzano, Italy
    Department of Science and Technology, Parthenope University of Naples, 80133 Naples, Italy)

  • Roula Khadra

    (International Center for Advanced Mediterranean Agronomic Studies, Mediterranean Agronomic Institute of Bari, Via Ceglie 9, 70010 Valenzano, Italy)

Abstract

In response to the impact of climate change and to the uncertainties associated with the various dimensions of hydrologic variability, water systems’ adaptation has risen to the top of global agendas. In accordance, identifying the additional science needed to improve our understanding of climate change and its impacts, including the scientific advances needed to improve the effectiveness of actions taken to adapt water systems, is of the utmost importance. To this aim, this research draws on a systematic bibliometric study of data, generated from the Web of Science research engine between 1990 and 2019, combined with a statistical analysis, to explore academic publication trends, and identify the strategic gaps and opportunities in global scientific research. The analysis shows the consistent level of national and international collaboration among authors, institutions, and countries, and highlights the substantial contribution of the USA and the UK to this research field. The statistical examination shows that the adaptation-informed literature on water systems remains fragmented, and predominantly centred on the framing of water resource planning and management, in addition to water engineering and infrastructure. The analysis also revealed a relatively skewed understanding of various important dimensions, such as governance, integrated water resources management, and stakeholder engagement, which are crucial for planning and implementing an efficient adaptation process. Observations reflect on the need to build water-related adaptive approaches based on a thorough understanding of potential climate uncertainties, rather than to generically address all the uncertainties in one scenario analysis. These approaches are required to combine short and longterm actions rather than considering only current and short-term measures, and to similarly associate policy and engineering, and equally consider the robustness, flexibility, reliability, and vulnerability during the planning phase.

Suggested Citation

  • Aymen Sawassi & Roula Khadra, 2021. "Bibliometric Network Analysis of “Water Systems’ Adaptation to Climate Change Uncertainties”: Concepts, Approaches, Gaps, and Opportunities," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6738-:d:574789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6738/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6738/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    2. Sarah Fletcher & Megan Lickley & Kenneth Strzepek, 2019. "Learning about climate change uncertainty enables flexible water infrastructure planning," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Yi-Ming Guo & Zhen-Ling Huang & Ji Guo & Hua Li & Xing-Rong Guo & Mpeoane Judith Nkeli, 2019. "Bibliometric Analysis on Smart Cities Research," Sustainability, MDPI, vol. 11(13), pages 1-18, June.
    4. Walker, Warren E. & Rahman, S. Adnan & Cave, Jonathan, 2001. "Adaptive policies, policy analysis, and policy-making," European Journal of Operational Research, Elsevier, vol. 128(2), pages 282-289, January.
    5. Cuiqian Huai & Lihe Chai, 2016. "A bibliometric analysis on the performance and underlying dynamic patterns of water security research," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1531-1551, September.
    6. Wang, Jinxia & Mendelsohn, Robert & Dinar, Ariel & Huang, Jikun & Rozelle, Scott & Zhang, Lijuan, 2008. "Can China continue feeding itself ? the impact of climate change on agriculture," Policy Research Working Paper Series 4470, The World Bank.
    7. Simon Gosling & Nigel Arnell, 2016. "A global assessment of the impact of climate change on water scarcity," Climatic Change, Springer, vol. 134(3), pages 371-385, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rigas, Nikos & Kounetas, Konstantinos, 2021. "The Role of temperature, Precipitation and CO2 emissions on Countries’ Economic Growth and Productivity," MPRA Paper 104727, University Library of Munich, Germany.
    2. Sawassi, Aymen & Ottomano Palmisano, Giovanni & Crookston, Brian & Khadra, Roula, 2022. "The Dominance-based Rough Set Approach for analysing patterns of flexibility allocation and design-cost criteria in large-scale irrigation systems," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Kristina Galjanić & Ivan Marović & Nikša Jajac, 2022. "Decision Support Systems for Managing Construction Projects: A Scientific Evolution Analysis," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    4. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    5. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    6. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    7. Abdoul G. Sam & Babatunde O. Abidoye & Sihle Mashaba, 2021. "Climate change and household welfare in sub-Saharan Africa: empirical evidence from Swaziland," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 439-455, April.
    8. Alessandro Moro, 2021. "Can capital controls promote green investments in developing countries?," Temi di discussione (Economic working papers) 1348, Bank of Italy, Economic Research and International Relations Area.
    9. Martin Henseler & Ingmar Schumacher, 2019. "The impact of weather on economic growth and its production factors," Climatic Change, Springer, vol. 154(3), pages 417-433, June.
    10. Brown, Marilyn A. & Li, Yufei & Soni, Anmol, 2020. "Are all jobs created equal? Regional employment impacts of a U.S. carbon tax," Applied Energy, Elsevier, vol. 262(C).
    11. Johnson Ankrah & Ana Monteiro & Helena Madureira, 2022. "Bibliometric Analysis of Data Sources and Tools for Shoreline Change Analysis and Detection," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    12. Dinar, Ariel, 2012. "Economy-wide implications of direct and indirect policy interventions in the water sector: lessons from recent work and future research needs," Policy Research Working Paper Series 6068, The World Bank.
    13. Reichardt, Kristin & Rogge, Karoline S. & Negro, Simona, 2015. "Unpacking the policy processes for addressing systemic problems: The case of the technological innovation system of offshore wind in Germany," Working Papers "Sustainability and Innovation" S2/2015, Fraunhofer Institute for Systems and Innovation Research (ISI).
    14. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    15. Sassi, Maria & Cardaci, Alberto, 2013. "Impact of rainfall pattern on cereal market and food security in Sudan: Stochastic approach and CGE model," Food Policy, Elsevier, vol. 43(C), pages 321-331.
    16. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    17. L. Oosterhout & E. Koks & P. Beukering & S. Schep & T. Tiggeloven & S. Manen & M. Knaap & C. Duinmeijer & S. L. Buijs, 2023. "An Integrated Assessment of Climate Change Impacts and Implications on Bonaire," Economics of Disasters and Climate Change, Springer, vol. 7(2), pages 147-178, July.
    18. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    19. Xueke Li & Amanda H. Lynch, 2023. "New insights into projected Arctic sea road: operational risks, economic values, and policy implications," Climatic Change, Springer, vol. 176(4), pages 1-16, April.
    20. Melike Torun, 2023. "Bibliometric Analysis and Visualization of Research in the Field of Green Economy (1993-2023)," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 10(2), pages 587-603, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6738-:d:574789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.