IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09677-x.html
   My bibliography  Save this article

Learning about climate change uncertainty enables flexible water infrastructure planning

Author

Listed:
  • Sarah Fletcher

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Megan Lickley

    (Massachusetts Institute of Technology)

  • Kenneth Strzepek

    (Massachusetts Institute of Technology)

Abstract

Water resources planning requires decision-making about infrastructure development under uncertainty in future regional climate conditions. However, uncertainty in climate change projections will evolve over the 100-year lifetime of a dam as new climate observations become available. Flexible strategies in which infrastructure is proactively designed to be changed in the future have the potential to meet water supply needs without expensive over-building. Evaluating tradeoffs between flexible and traditional static planning approaches requires extension of current paradigms for planning under climate change uncertainty which do not assess opportunities to reduce uncertainty in the future. We develop a new planning framework that assesses the potential to learn about regional climate change over time and therefore evaluates the appropriateness of flexible approaches today. We demonstrate it on a reservoir planning problem in Mombasa, Kenya. This approach identifies opportunities to reliably use incremental approaches, enabling adaptation investments to reach more vulnerable communities with fewer resources.

Suggested Citation

  • Sarah Fletcher & Megan Lickley & Kenneth Strzepek, 2019. "Learning about climate change uncertainty enables flexible water infrastructure planning," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09677-x
    DOI: 10.1038/s41467-019-09677-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09677-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09677-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueke Li & Amanda H. Lynch, 2023. "New insights into projected Arctic sea road: operational risks, economic values, and policy implications," Climatic Change, Springer, vol. 176(4), pages 1-16, April.
    2. Xu, Xin & Huang, Shupei & Lucey, Brian M. & An, Haizhong, 2023. "The impacts of climate policy uncertainty on stock markets: Comparison between China and the US," International Review of Financial Analysis, Elsevier, vol. 88(C).
    3. Maria da Conceição Cunha, 2023. "Water and Environmental Systems Management Under Uncertainty: From Scenario Construction to Robust Solutions and Adaptation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2271-2285, May.
    4. Francesco Pugliese & Carlo Gerundo & Francesco Paola & Gerardo Caroppi & Maurizio Giugni, 2022. "Enhancing the Urban Resilience to Flood Risk Through a Decision Support Tool for the LID-BMPs Optimal Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5633-5654, November.
    5. Veruska Muccione & Thomas Lontzek & Christian Huggel & Philipp Ott & Nadine Salzmann, 2023. "An application of dynamic programming to local adaptation decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 523-544, October.
    6. Aymen Sawassi & Roula Khadra, 2021. "Bibliometric Network Analysis of “Water Systems’ Adaptation to Climate Change Uncertainties”: Concepts, Approaches, Gaps, and Opportunities," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
    7. Sawassi, Aymen & Ottomano Palmisano, Giovanni & Crookston, Brian & Khadra, Roula, 2022. "The Dominance-based Rough Set Approach for analysing patterns of flexibility allocation and design-cost criteria in large-scale irrigation systems," Agricultural Water Management, Elsevier, vol. 272(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09677-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.