IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6121-d564772.html
   My bibliography  Save this article

Sustainable Development of Operations: Actors’ Involvement in the Process of Energy Efficiency Improvements

Author

Listed:
  • Naghmeh Taghavi

    (Division of Service Management & Logistics, Chalmers University of Technology, 41296 Gothenburg, Sweden)

Abstract

This study empirically investigates the involvement of actors in the process of energy-efficiency improvements in operations to align strategic sustainability goals across and within operations. The study analyzes development efforts stemming from actors’ decisions and actions that contribute to the process of energy efficiency improvements using semi-structured interviews and secondary information. Data is analyzed using thematic coding. The study deepens the understanding of how firms undertake the transition towards integrating strategic goals for energy efficiency into operations by strategizing for energy efficiency improvements through actors’ involvement. By exploring actors at both strategic and operational levels, and their decisions and actions, the study includes examples of different approaches, namely, top-down vs. bottom-up and inside-out vs. outside-in, thereby conceptualizing the process of energy-efficiency improvements in terms of a framework that outlines the entities of this process. The study further provides an integrative framework for the development efforts by different actors and presents propositions for incorporating energy-efficiency improvements in daily strategic and operational decisions and actions instead of regarding it as a separate or an add-on process.

Suggested Citation

  • Naghmeh Taghavi, 2021. "Sustainable Development of Operations: Actors’ Involvement in the Process of Energy Efficiency Improvements," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6121-:d:564772
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin, Ralf & Muûls, Mirabelle & de Preux, Laure B. & Wagner, Ulrich J., 2012. "Anatomy of a paradox: Management practices, organizational structure and energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 208-223.
    2. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    3. Árni Halldórsson & Ida Gremyr & Anette Winter & Naghmeh Taghahvi, 2018. "Lean Energy: Turning Sustainable Development into Organizational Renewal," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    4. Fleiter, Tobias & Hirzel, Simon & Worrell, Ernst, 2012. "The characteristics of energy-efficiency measures – a neglected dimension," Energy Policy, Elsevier, vol. 51(C), pages 502-513.
    5. Roger L. Burritt & Stefan Schaltegger, 2010. "Sustainability accounting and reporting: fad or trend?," Accounting, Auditing & Accountability Journal, Emerald Group Publishing Limited, vol. 23(7), pages 829-846, September.
    6. Kluczek, Aldona, 2019. "An energy-led sustainability assessment of production systems – An approach for improving energy efficiency performance," International Journal of Production Economics, Elsevier, vol. 216(C), pages 190-203.
    7. David Naranjo-Gil, 2016. "The Role of Management Control Systems and Top Teams in Implementing Environmental Sustainability Policies," Sustainability, MDPI, vol. 8(4), pages 1-12, April.
    8. Gimenez, Cristina & Sierra, Vicenta & Rodon, Juan, 2012. "Sustainable operations: Their impact on the triple bottom line," International Journal of Production Economics, Elsevier, vol. 140(1), pages 149-159.
    9. Josefine Rasmussen, 2020. "The Role of Structural Context in Making Business Sense of Investments for Sustainability–A Case Study," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
    10. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    11. Blass, Vered & Corbett, Charles J. & Delmas, Magali A. & Muthulingam, Suresh, 2014. "Top management and the adoption of energy efficiency practices: Evidence from small and medium-sized manufacturing firms in the US," Energy, Elsevier, vol. 65(C), pages 560-571.
    12. Maria Besiou & Luk N. Van Wassenhove, 2015. "Addressing the Challenge of Modeling for Decision-Making in Socially Responsible Operations," Production and Operations Management, Production and Operations Management Society, vol. 24(9), pages 1390-1401, September.
    13. Rudberg, Martin & Waldemarsson, Martin & Lidestam, Helene, 2013. "Strategic perspectives on energy management: A case study in the process industry," Applied Energy, Elsevier, vol. 104(C), pages 487-496.
    14. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    15. Rohdin, Patrik & Thollander, Patrik & Solding, Petter, 2007. "Barriers to and drivers for energy efficiency in the Swedish foundry industry," Energy Policy, Elsevier, vol. 35(1), pages 672-677, January.
    16. Therese Nehler, 2018. "A Systematic Literature Review of Methods for Improved Utilisation of the Non-Energy Benefits of Industrial Energy Efficiency," Energies, MDPI, vol. 11(12), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    2. Noor Jalo & Ida Johansson & Mariana Andrei & Therese Nehler & Patrik Thollander, 2021. "Barriers to and Drivers of Energy Management in Swedish SMEs," Energies, MDPI, vol. 14(21), pages 1-21, October.
    3. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    4. Mette Talseth Solnørdal & Elin Anita Nilsen, 2020. "From Program to Practice: Translating Energy Management in a Manufacturing Firm," Sustainability, MDPI, vol. 12(23), pages 1-24, December.
    5. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    6. Trianni, Andrea & Cagno, Enrico & Bertolotti, Matteo & Thollander, Patrik & Andersson, Elias, 2019. "Energy management: A practice-based assessment model," Applied Energy, Elsevier, vol. 235(C), pages 1614-1636.
    7. Alexander Melnik & Kirill Ermolaev, 2020. "Strategy Context of Decision Making for Improved Energy Efficiency in Industrial Energy Systems," Energies, MDPI, vol. 13(7), pages 1-28, March.
    8. Accordini, D. & Cagno, E. & Trianni, A., 2021. "Identification and characterization of decision-making factors over industrial energy efficiency measures in electric motor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Josefine Rasmussen, 2020. "The Role of Structural Context in Making Business Sense of Investments for Sustainability–A Case Study," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
    10. Iftikhar Ahmad & Muhammad Salman Arif & Izzat Iqbal Cheema & Patrik Thollander & Masroor Ahmed Khan, 2020. "Drivers and Barriers for Efficient Energy Management Practices in Energy-Intensive Industries: A Case-Study of Iron and Steel Sector," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    11. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    13. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    14. Kelly M. Smith & Stephen Wilson & Paul Lant & Maureen E. Hassall, 2022. "How Do We Learn about Drivers for Industrial Energy Efficiency—Current State of Knowledge," Energies, MDPI, vol. 15(7), pages 1-26, April.
    15. Andrea Trianni & Davide Accordini & Enrico Cagno, 2020. "Identification and Categorization of Factors Affecting the Adoption of Energy Efficiency Measures within Compressed Air Systems," Energies, MDPI, vol. 13(19), pages 1-51, October.
    16. Marlene Preiß, 2021. "Treiber und Hemmnisse betrieblicher Effizienzmaßnahmen – Vernetzung als Erfolgsfaktor [Drivers and barriers of operational efficiency measures—networking as a success factor]," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 93-106, June.
    17. Wei, Min & Hong, Seung Ho & Alam, Musharraf, 2016. "An IoT-based energy-management platform for industrial facilities," Applied Energy, Elsevier, vol. 164(C), pages 607-619.
    18. Finnerty, Noel & Sterling, Raymond & Contreras, Sergio & Coakley, Daniel & Keane, Marcus M., 2018. "Defining corporate energy policy and strategy to achieve carbon emissions reduction targets via energy management in non-energy intensive multi-site manufacturing organisations," Energy, Elsevier, vol. 151(C), pages 913-929.
    19. Pusnik, Matevz & Al-Mansour, Fouad & Sucic, Boris & Gubina, A.F., 2016. "Gap analysis of industrial energy management systems in Slovenia," Energy, Elsevier, vol. 108(C), pages 41-49.
    20. A S M Monjurul Hasan & Andrea Trianni, 2020. "A Review of Energy Management Assessment Models for Industrial Energy Efficiency," Energies, MDPI, vol. 13(21), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6121-:d:564772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.