IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3544-d350846.html
   My bibliography  Save this article

Employing Machine Learning for Detection of Invasive Species using Sentinel-2 and AVIRIS Data: The Case of Kudzu in the United States

Author

Listed:
  • Tobias Jensen

    (Department of Planning, Geography and Surveying, Aalborg University Copenhagen, A.C Meyers Vænge 15, 2450 Copenhagen, Denmark)

  • Frederik Seerup Hass

    (Department of Planning, Geography and Surveying, Aalborg University Copenhagen, A.C Meyers Vænge 15, 2450 Copenhagen, Denmark)

  • Mohammad Seam Akbar

    (Department of Planning, Geography and Surveying, Aalborg University Copenhagen, A.C Meyers Vænge 15, 2450 Copenhagen, Denmark)

  • Philip Holm Petersen

    (Department of Planning, Geography and Surveying, Aalborg University Copenhagen, A.C Meyers Vænge 15, 2450 Copenhagen, Denmark)

  • Jamal Jokar Arsanjani

    (Department of Planning, Geography and Surveying, Aalborg University Copenhagen, A.C Meyers Vænge 15, 2450 Copenhagen, Denmark)

Abstract

Invasive plants are causing massive economic and environmental troubles for our societies worldwide. The aim of this study is to employ a set of machine learning classifiers for detecting invasive plant species using remote sensing data. The target species is Kudzu vine, which mostly grows in the south-eastern states of the US and quickly outcompetes other plants, making it a relevant and threatening species to consider. Our study area is Atlanta, Georgia and the surrounding area. Five different algorithms: Boosted Logistic Regression (BLR), Naive Bayes (NB), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM) were tested with the aim of testing their performance and identifying the most optimal one. Furthermore, the influence of temporal, spectral and spatial resolution in detecting Kudzu was also tested and reviewed. Our finding shows that random forest, neural network and support vector machine classifiers outperformed. While the achieved internal accuracies were about 97%, an external validation conducted over an expanded area of interest resulted in 79.5% accuracy. Furthermore, the study indicates that high accuracy classification can be achieved using multispectral Sentinel-2 imagery and can be improved while integrating with airborne visible/infrared imaging spectrometer (AVIRIS) hyperspectral data. Finally, this study indicates that dimensionality reduction methods such as principal component analysis (PCA) should be applied cautiously to the hyperspectral AVIRIS data to preserve its utility. The applied approach and the utilized set of methods can be of interest for detecting other kinds of invasive species as part of fulfilling UN sustainable development goals, particularly number 12: responsible consumption and production, 13: climate action, and 15: life on land.

Suggested Citation

  • Tobias Jensen & Frederik Seerup Hass & Mohammad Seam Akbar & Philip Holm Petersen & Jamal Jokar Arsanjani, 2020. "Employing Machine Learning for Detection of Invasive Species using Sentinel-2 and AVIRIS Data: The Case of Kudzu in the United States," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3544-:d:350846
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pimentel, David & Zuniga, Rodolfo & Morrison, Doug, 2005. "Update on the environmental and economic costs associated with alien-invasive species in the United States," Ecological Economics, Elsevier, vol. 52(3), pages 273-288, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter Leal Filho & Peter Yang & João Henrique Paulino Pires Eustachio & Anabela Marisa Azul & Joshua C. Gellers & Agata Gielczyk & Maria Alzira Pimenta Dinis & Valerija Kozlova, 2023. "Deploying digitalisation and artificial intelligence in sustainable development research," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 4957-4988, June.
    2. Shivam Gupta & Jazmin Campos Zeballos & Gema del Río Castro & Ana Tomičić & Sergio Andrés Morales & Maya Mahfouz & Isimemen Osemwegie & Vicky Phemia Comlan Sessi & Marina Schmitz & Nady Mahmoud & Mnen, 2023. "Operationalizing Digitainability: Encouraging Mindfulness to Harness the Power of Digitalization for Sustainable Development," Sustainability, MDPI, vol. 15(8), pages 1-37, April.
    3. Diane A. Isabelle & Mika Westerlund, 2022. "A Review and Categorization of Artificial Intelligence-Based Opportunities in Wildlife, Ocean and Land Conservation," Sustainability, MDPI, vol. 14(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ceddia, M.G. & Bardsley, N.O. & Goodwin, R. & Holloway, G.J. & Nocella, G. & Stasi, A., 2013. "A complex system perspective on the emergence and spread of infectious diseases: Integrating economic and ecological aspects," Ecological Economics, Elsevier, vol. 90(C), pages 124-131.
    2. Travis Warziniack & David Finnoff & Jonathan Bossenbroek & Jason Shogren & David Lodge, 2011. "Stepping Stones for Biological Invasion: A Bioeconomic Model of Transferable Risk," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 50(4), pages 605-627, December.
    3. Blackwood, Julie & Hastings, Alan & Costello, Christopher, 2010. "Cost-effective management of invasive species using linear-quadratic control," Ecological Economics, Elsevier, vol. 69(3), pages 519-527, January.
    4. Cook, David & Proctor, Wendy, 2007. "Assessing the threat of exotic plant pests," Ecological Economics, Elsevier, vol. 63(2-3), pages 594-604, August.
    5. Mirko Di Febbraro & Peter W W Lurz & Piero Genovesi & Luigi Maiorano & Marco Girardello & Sandro Bertolino, 2013. "The Use of Climatic Niches in Screening Procedures for Introduced Species to Evaluate Risk of Spread: A Case with the American Eastern Grey Squirrel," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    6. Colvin, Michael E. & Pierce, Clay L. & Stewart, Timothy W., 2015. "A food web modeling analysis of a Midwestern, USA eutrophic lake dominated by non-native Common Carp and Zebra Mussels," Ecological Modelling, Elsevier, vol. 312(C), pages 26-40.
    7. Beça, Pedro & Santos, Rui, 2010. "Measuring sustainable welfare: A new approach to the ISEW," Ecological Economics, Elsevier, vol. 69(4), pages 810-819, February.
    8. Don Driscoll & Adam Felton & Philip Gibbons & Annika Felton & Nicola Munro & David Lindenmayer, 2012. "Priorities in policy and management when existing biodiversity stressors interact with climate-change," Climatic Change, Springer, vol. 111(3), pages 533-557, April.
    9. Liu, Yanxu & Sims, Charles, 2016. "Spatial-dynamic externalities and coordination in invasive species control," Resource and Energy Economics, Elsevier, vol. 44(C), pages 23-38.
    10. Jones, Kristin Roti & Corona, Joel P., 2008. "An ambient tax approach to invasive species," Ecological Economics, Elsevier, vol. 64(3), pages 534-541, January.
    11. Sinden, John Alfred & Griffith, Garry, 2007. "Combining economic and ecological arguments to value the environmental gains from control of 35 weeds in Australia," Ecological Economics, Elsevier, vol. 61(2-3), pages 396-408, March.
    12. Gabriele Soriano & Mónica Fernández-Aparicio & Marco Masi & Susana Vilariño-Rodríguez & Alessio Cimmino, 2022. "Complex Mixture of Arvensic Acids Isolated from Convolvulus arvensis Roots Identified as Inhibitors of Radicle Growth of Broomrape Weeds," Agriculture, MDPI, vol. 12(5), pages 1-10, April.
    13. Zapata, Samuel D. & Dudensing, Rebekka & Sekula, Danielle & Esparza-Dã Az, Gabriela & Villanueva, Raul, 2018. "Economic Impact Of The Sugarcane Aphid Outbreak In South Texas," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 50(1), pages 104-128, February.
    14. Hlasny, Vladimir & Livingston, Michael J., 2008. "Economic Determinants of Invasion and Discovery of Nonindigenous Insects," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 40(1), pages 37-52, April.
    15. Giaccaria Sergio & Dalmazzone Silvana, 2010. "Socio-economic drivers of biological invasions. A worldwide, bio-geographical analysis of trade flows and local environmental quality," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201003, University of Turin.
    16. Parshad, Rana D. & Wickramsooriya, Sureni & Bailey, Susan, 2020. "A remark on “Biological control through provision of additional food to predators: A theoretical study†[Theor. Popul. Biol. 72 (2007) 111–120]," Theoretical Population Biology, Elsevier, vol. 132(C), pages 60-68.
    17. Antonio Moreno-Robles & Antonio Cala Peralta & Gabriele Soriano & Jesús G. Zorrilla & Marco Masi & Susana Vilariño-Rodríguez & Alessio Cimmino & Mónica Fernández-Aparicio, 2022. "Identification of Allelochemicals with Differential Modes of Phytotoxicity against Cuscuta campestris," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
    18. Horsch, Eric J. & Lewis, David J., 2008. "The Effects of Aquatic Invasive Species on Property Values: Evidence from a Quasi-Random Experiment," Staff Papers 92216, University of Wisconsin-Madison, Department of Agricultural and Applied Economics.
    19. Cook, David C., 2008. "Benefit cost analysis of an import access request," Food Policy, Elsevier, vol. 33(3), pages 277-285, June.
    20. Jardine, Sunny L. & Sanchirico, James N., 2018. "Estimating the cost of invasive species control," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 242-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3544-:d:350846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.