IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i4p1145-d208011.html
   My bibliography  Save this article

Application of Artificial Neural Network for Predicting Maize Production in South Africa

Author

Listed:
  • Omolola M. Adisa

    (Department of Geography, Geoinformatics & Meteorology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Joel O. Botai

    (Department of Geography, Geoinformatics & Meteorology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
    South African Weather Service, Private Bag X097, Pretoria 0001, South Africa
    School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa)

  • Abiodun M. Adeola

    (South African Weather Service, Private Bag X097, Pretoria 0001, South Africa
    School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Abubeker Hassen

    (Department of Animal and Wildlife Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Christina M. Botai

    (South African Weather Service, Private Bag X097, Pretoria 0001, South Africa)

  • Daniel Darkey

    (Department of Geography, Geoinformatics & Meteorology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Eyob Tesfamariam

    (Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

Abstract

The use of crop modeling as a decision tool by farmers and other decision-makers in the agricultural sector to improve production efficiency has been on the increase. In this study, artificial neural network (ANN) models were used for predicting maize in the major maize producing provinces of South Africa. The maize production prediction and projection analysis were carried out using the following climate variables: precipitation (PRE), maximum temperature (TMX), minimum temperature (TMN), potential evapotranspiration (PET), soil moisture (SM) and land cultivated (Land) for maize. The analyzed datasets spanned from 1990 to 2017 and were divided into two segments with 80% used for model training and the remaining 20% for testing. The results indicated that PET, PRE, TMN, TMX, Land, and SM with two hidden neurons of vector (5,8) were the best combination to predict maize production in the Free State province, whereas the TMN, TMX, PET, PRE, SM and Land with vector (7,8) were the best combination for predicting maize in KwaZulu-Natal province. In addition, the TMN, SM and Land and TMN, TMX, SM and Land with vector (3,4) were the best combination for maize predicting in the North West and Mpumalanga provinces, respectively. The comparison between the actual and predicted maize production using the testing data indicated performance accuracy adjusted R 2 of 0.75 for Free State, 0.67 for North West, 0.86 for Mpumalanga and 0.82 for KwaZulu-Natal. Furthermore, a decline in the projected maize production was observed across all the selected provinces (except the Free State province) from 2018 to 2019. Thus, the developed model can help to enhance the decision making process of the farmers and policymakers.

Suggested Citation

  • Omolola M. Adisa & Joel O. Botai & Abiodun M. Adeola & Abubeker Hassen & Christina M. Botai & Daniel Darkey & Eyob Tesfamariam, 2019. "Application of Artificial Neural Network for Predicting Maize Production in South Africa," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1145-:d:208011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/4/1145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/4/1145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klemme, Richard M. & Martin, Marshall A. & Whittaker, James K., 1978. "An Econometric Yield Response And Forecasting Model For Corn In Indiana," 1978 Annual Meeting, August 6-9, Blacksburg, Virginia 284174, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Kaul, Monisha & Hill, Robert L. & Walthall, Charles, 2005. "Artificial neural networks for corn and soybean yield prediction," Agricultural Systems, Elsevier, vol. 85(1), pages 1-18, July.
    3. Intrator, Orna & Intrator, Nathan, 2001. "Interpreting neural-network results: a simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 37(3), pages 373-393, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2021. "Selection of Independent Variables for Crop Yield Prediction Using Artificial Neural Network Models with Remote Sensing Data," Land, MDPI, vol. 10(6), pages 1-21, June.
    2. Bhoomin Tanut & Rattapoom Waranusast & Panomkhawn Riyamongkol, 2021. "High Accuracy Pre-Harvest Sugarcane Yield Forecasting Model Utilizing Drone Image Analysis, Data Mining, and Reverse Design Method," Agriculture, MDPI, vol. 11(7), pages 1-21, July.
    3. Alexander Kocian & Luca Incrocci, 2020. "Learning from Data to Optimize Control in Precision Farming," Stats, MDPI, vol. 3(3), pages 1-7, July.
    4. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Hong, Yang, 2020. "Crop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta, Egypt," Agricultural Water Management, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    2. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    3. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    4. Arundina, Tika & Azmi Omar, Mohd. & Kartiwi, Mira, 2015. "The predictive accuracy of Sukuk ratings; Multinomial Logistic and Neural Network inferences," Pacific-Basin Finance Journal, Elsevier, vol. 34(C), pages 273-292.
    5. Srinivasagan N. Subhashree & C. Igathinathane & Adnan Akyuz & Md. Borhan & John Hendrickson & David Archer & Mark Liebig & David Toledo & Kevin Sedivec & Scott Kronberg & Jonathan Halvorson, 2023. "Tools for Predicting Forage Growth in Rangelands and Economic Analyses—A Systematic Review," Agriculture, MDPI, vol. 13(2), pages 1-30, February.
    6. Jiménez, Daniel & Cock, James & Jarvis, Andy & Garcia, James & Satizábal, Héctor F. & Damme, Patrick Van & Pérez-Uribe, Andrés & Barreto-Sanz, Miguel A., 2011. "Interpretation of commercial production information: A case study of lulo (Solanum quitoense), an under-researched Andean fruit," Agricultural Systems, Elsevier, vol. 104(3), pages 258-270, March.
    7. Xu, Chang & Katchova, Ani L., 2019. "Predicting Soybean Yield with NDVI Using a Flexible Fourier Transform Model," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 51(3), pages 402-416, August.
    8. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2021. "Selection of Independent Variables for Crop Yield Prediction Using Artificial Neural Network Models with Remote Sensing Data," Land, MDPI, vol. 10(6), pages 1-21, June.
    9. García-Alonso, Carlos R. & Torres-Jiménez, Mercedes & Hervás-Martínez, César, 2010. "Income prediction in the agrarian sector using product unit neural networks," European Journal of Operational Research, Elsevier, vol. 204(2), pages 355-365, July.
    10. Pourmohammadali, Behrooz & Hosseinifard, Seyed Javad & Hassan Salehi, Mohammad & Shirani, Hossein & Esfandiarpour Boroujeni, Isa, 2019. "Effects of soil properties, water quality and management practices on pistachio yield in Rafsanjan region, southeast of Iran," Agricultural Water Management, Elsevier, vol. 213(C), pages 894-902.
    11. Rousseeuw, Peter J. & Christmann, Andreas, 2003. "Robustness against separation and outliers in logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 43(3), pages 315-332, July.
    12. Kelvin López-Aguilar & Adalberto Benavides-Mendoza & Susana González-Morales & Antonio Juárez-Maldonado & Pamela Chiñas-Sánchez & Alvaro Morelos-Moreno, 2020. "Artificial Neural Network Modeling of Greenhouse Tomato Yield and Aerial Dry Matter," Agriculture, MDPI, vol. 10(4), pages 1-14, April.
    13. Jules F. Cacho & Jeremy Feinstein & Colleen R. Zumpf & Yuki Hamada & Daniel J. Lee & Nictor L. Namoi & DoKyoung Lee & Nicholas N. Boersma & Emily A. Heaton & John J. Quinn & Cristina Negri, 2023. "Predicting Biomass Yields of Advanced Switchgrass Cultivars for Bioenergy and Ecosystem Services Using Machine Learning," Energies, MDPI, vol. 16(10), pages 1-16, May.
    14. Bazrafshan, Ommolbanin & Ehteram, Mohammad & Moshizi, Zahra Gerkaninezhad & Jamshidi, Sajad, 2022. "Evaluation and uncertainty assessment of wheat yield prediction by multilayer perceptron model with bayesian and copula bayesian approaches," Agricultural Water Management, Elsevier, vol. 273(C).
    15. Emerson Rodolfo Abraham & João Gilberto Mendes dos Reis & Oduvaldo Vendrametto & Pedro Luiz de Oliveira Costa Neto & Rodrigo Carlo Toloi & Aguinaldo Eduardo de Souza & Marcos de Oliveira Morais, 2020. "Time Series Prediction with Artificial Neural Networks: An Analysis Using Brazilian Soybean Production," Agriculture, MDPI, vol. 10(10), pages 1-18, October.
    16. Taheri-Rad, Alireza & Khojastehpour, Mehdi & Rohani, Abbas & Khoramdel, Surur & Nikkhah, Amin, 2017. "Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks," Energy, Elsevier, vol. 135(C), pages 405-412.
    17. Szulczewski, Wieslaw & Zyromski, Andrzej & Biniak-Pieróg, Malgorzata & Machowczyk, Anna, 2010. "Modelling of the effect of dry periods on yielding of spring barley," Agricultural Water Management, Elsevier, vol. 97(5), pages 587-595, May.
    18. Eihab M. Fathelrahman & Adel I. El Awad & Ahmed M. Yousif Mohamed & Yassir M. Eltahir & Hussein H. Hassanin & Mohamed Elfatih Mohamed & Dana L. K. Hoag, 2020. "Biosecurity Preparedness Analysis for Poultry Large and Small Farms in the United Arab Emirates," Agriculture, MDPI, vol. 10(10), pages 1-19, September.
    19. Renato Domiciano Silva Rosado & Cosme Damião Cruz & Leiri Daiane Barili & José Eustáquio de Souza Carneiro & Pedro Crescêncio Souza Carneiro & Vinicius Quintão Carneiro & Jackson Tavela da Silva & Moy, 2020. "Artificial Neural Networks in the Prediction of Genetic Merit to Flowering Traits in Bean Cultivars," Agriculture, MDPI, vol. 10(12), pages 1-11, December.
    20. Kuruguntu Mohan Krithika & Nachimuthu Maheswari & Manickam Sivagami, 2022. "Models for feature selection and efficient crop yield prediction in the groundnut production," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 68(3), pages 131-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1145-:d:208011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.