IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p7168-d298019.html
   My bibliography  Save this article

Evolution of Green Industrial Growth between Europe and China based on the Energy Consumption Model

Author

Listed:
  • Yanbing Mao

    (School of Economics, Shanghai University, Shanghai 200444, China)

  • Kui Liu

    (School of Economics, Shanghai University, Shanghai 200444, China)

  • Jizhi Zhou

    (School of Economics, Shanghai University, Shanghai 200444, China)

Abstract

Greenhouse gas (GHG) emissions are an important factor in the evaluation of green industrial growth, when low GHG emissions along with high industrial growth are expected. In this paper, the improvement of sustainable development of industry in China (2007–2015) was investigated via analysis of the relationships between the GHG emissions and energy consumption in comparison to European countries. A hierarchical cluster analysis (HCA) was conducted to distinguish industrial growth with GHG emission and energy consumption structures. The results of this research indicated that green industrial growth in Europe had a negative annual rate of GHG emissions. This contributed to the ratio of renewable energy consumption increasing to a maximum of 33% and an average of 16%. In comparison, the GHG emissions in China increased at a rate of 50% to 77% in the main industrial provinces since 2007 with their rapid industrial growth. The rate of GHG emissions decreased after 2012, which was 7% or less than the rate of emissions in the industrial provinces. Contrary to in Europe, the decreasing rate of GHG emissions in China was attributed to the improvement of fossil energy efficiency, as renewable energy consumption was less than 10% in most industrial provinces. Our data analysis identified that the two different energy consumption strategies improved green industrial growth in Europe and China, respectively. Our data analysis identified the two different energy consumption strategies employed by Europe and China, each of which promoted green industrial growth in the corresponding areas. We concluded that China achieved green industrial growth through an increase in energy efficiency through technology updates to decrease GHG emissions, which we call the “China Model.” The “Europe Model” proved to be quite different, having the core characteristic of increasing renewable energy use.

Suggested Citation

  • Yanbing Mao & Kui Liu & Jizhi Zhou, 2019. "Evolution of Green Industrial Growth between Europe and China based on the Energy Consumption Model," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7168-:d:298019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/7168/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/7168/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karmellos, M. & Kopidou, D. & Diakoulaki, D., 2016. "A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries," Energy, Elsevier, vol. 94(C), pages 680-692.
    2. repec:hal:spmain:info:hdl:2441/jff6fcqc8e6bbhnlvps4rou6 is not listed on IDEAS
    3. Lin Boqiang & Kui Liu, 2017. "Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
    4. Liu, Kui & Bai, Hongkun & Yin, Shuo & Lin, Boqiang, 2018. "Factor substitution and decomposition of carbon intensity in China's heavy industry," Energy, Elsevier, vol. 145(C), pages 582-591.
    5. Konstantinos G. Aravossis & Vasilis C. Kapsalis & Grigorios L. Kyriakopoulos & Theofanis G. Xouleis, 2019. "Development of a Holistic Assessment Framework for Industrial Organizations," Sustainability, MDPI, vol. 11(14), pages 1-24, July.
    6. Verdolini, Elena & Vona, Francesco & Popp, David, 2018. "Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?," Energy Policy, Elsevier, vol. 116(C), pages 242-256.
    7. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    8. Jing Xiao & Ron Boschma & Martin Andersson, 2018. "Industrial Diversification in Europe: The Differentiated Role of Relatedness," Economic Geography, Taylor & Francis Journals, vol. 94(5), pages 514-549, October.
    9. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
    10. Wang, Yun & Sun, Xiaohua & Guo, Xu, 2019. "Environmental regulation and green productivity growth: Empirical evidence on the Porter Hypothesis from OECD industrial sectors," Energy Policy, Elsevier, vol. 132(C), pages 611-619.
    11. Boqiang Lin & Guanglu Zhang, 2018. "Can Industrial Restructuring Significantly Reduce Energy Consumption? Evidence from China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(5), pages 1082-1095, April.
    12. Tian, Peng & Lin, Boqiang, 2017. "Promoting green productivity growth for China's industrial exports: Evidence from a hybrid input-output model," Energy Policy, Elsevier, vol. 111(C), pages 394-402.
    13. Zhao, Min & Tan, Lirong & Zhang, Weiguo & Ji, Minhe & Liu, Yuan & Yu, Lizhong, 2010. "Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method," Energy, Elsevier, vol. 35(6), pages 2505-2510.
    14. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    15. Miklós Antal & Jeroen C.J.M. Van Den Bergh, 2016. "Green growth and climate change: conceptual and empirical considerations," Climate Policy, Taylor & Francis Journals, vol. 16(2), pages 165-177, March.
    16. Li, Ke & Lin, Boqiang, 2016. "Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model," Applied Energy, Elsevier, vol. 168(C), pages 351-363.
    17. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    18. Li, Ke & Lin, Boqiang, 2017. "Economic growth model, structural transformation, and green productivity in China," Applied Energy, Elsevier, vol. 187(C), pages 489-500.
    19. Xiping Wang & Moyang Li, 2019. "The Spatial Spillover Effects of Environmental Regulation on China’s Industrial Green Growth Performance," Energies, MDPI, vol. 12(2), pages 1-13, January.
    20. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    21. Stavros Tsiantikoudis & Eleni Zafeiriou & Grigorios Kyriakopoulos & Garyfallos Arabatzis, 2019. "Revising the Environmental Kuznets Curve for Deforestation: An Empirical Study for Bulgaria," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    22. Paula Bajdor, 2012. "Comparison Between Sustainable Development Concept And Green Logistics – The Literature Review," Polish Journal of Management Studies, Czestochowa Technical University, Department of Management, vol. 5(1), pages 236-244, June.
    23. Shahsavari, Amir & Akbari, Morteza, 2018. "Potential of solar energy in developing countries for reducing energy-related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 275-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marina V. Shinkevich & Irina G. Ershova & Izida I. Ishmuradova & Valeriy I. Prasolov & Alexey I. Prokopyev & Yana A. Cherezova, 2021. "State Priorities in the Petrochemistry of Russia: Sustainable Development, Green Industry and Energy Efficiency," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 59-68.
    2. Yuting Cui & Raphael Lissillour & Juraj Chebeň & Drahoslav Lančarič & Chunlin Duan, 2022. "The position of financial prudence, social influence, and environmental satisfaction in the sustainable consumption behavioural model: Cross‐market intergenerational investigation during the Covid‐19 ," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(4), pages 996-1020, July.
    3. Marina V. Shinkevich & Nikolay A. Mashkin & Izida I. Ishmuradova & Valeria V. Kolosova & Olga V. Popova, 2020. "Management of Sustainable Consumption of Energy Resources in the Conditions of Digital Transformation of the Industrial Complex," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 454-460.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chi-Chuan & Lee, Chien-Chiang, 2022. "How does green finance affect green total factor productivity? Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    2. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    3. Sheng-Wen Tseng, 2019. "Analysis of Energy-Related Carbon Emissions in Inner Mongolia, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    4. Manli Cheng & Zhen Shao & Changhui Yang & Xiaoan Tang, 2019. "Analysis of Coordinated Development of Energy and Environment in China’s Manufacturing Industry under Environmental Regulation: A Comparative Study of Sub-Industries," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    5. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
    6. Moutinho, Victor & Madaleno, Mara & Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "Factors affecting CO2 emissions in top countries on renewable energies: A LMDI decomposition application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 605-622.
    7. Lin, Boqiang & Zhou, Yicheng, 2022. "Measuring the green economic growth in China: Influencing factors and policy perspectives," Energy, Elsevier, vol. 241(C).
    8. Weihua Su & Yuying Wang & Dalia Streimikiene & Tomas Balezentis & Chonghui Zhang, 2020. "Carbon dioxide emission decomposition along the gradient of economic development: The case of energy sustainability in the G7 and Brazil, Russia, India, China and South Africa," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 657-669, July.
    9. Xin Yang & Chunbo Ma & Anlu Zhang, 2016. "Decomposition of Net CO 2 Emission in the Wuhan Metropolitan Area of Central China," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
    10. Li, Ke & Lin, Boqiang, 2018. "How to promote energy efficiency through technological progress in China?," Energy, Elsevier, vol. 143(C), pages 812-821.
    11. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    12. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    13. Yuxin Fang & Hongjun Cao & Jihui Sun, 2022. "Impact of Artificial Intelligence on Regional Green Development under China’s Environmental Decentralization System—Based on Spatial Durbin Model and Threshold Effect," IJERPH, MDPI, vol. 19(22), pages 1-27, November.
    14. Jiang, Rui & Wu, Peng & Song, Yongze & Wu, Chengke & Wang, Peng & Zhong, Yun, 2022. "Factors influencing the adoption of renewable energy in the U.S. residential sector: An optimal parameters-based geographical detector approach," Renewable Energy, Elsevier, vol. 201(P1), pages 450-461.
    15. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    16. Gao, Kang & Yuan, Yijun, 2022. "Spatiotemporal pattern assessment of China’s industrial green productivity and its spatial drivers: Evidence from city-level data over 2000–2017," Applied Energy, Elsevier, vol. 307(C).
    17. Meng Ye & Yanan Jin & Fumin Deng, 2022. "Municipal waste treatment efficiency in 29 OECD countries using three-stage Bootstrap-DEA model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11369-11391, September.
    18. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    19. Chen, Bin & Yan, Jun & Zhu, Xun & Liu, Yue, 2023. "The potential role of renewable power penetration in energy intensity reduction: Evidence from the Chinese provincial electricity sector," Energy Economics, Elsevier, vol. 127(PB).
    20. Xu, Mengmeng & Lin, Boqiang, 2022. "Energy efficiency gains from distortion mitigation: A perspective on the metallurgical industry," Resources Policy, Elsevier, vol. 77(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7168-:d:298019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.