IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i17p4718-d262192.html
   My bibliography  Save this article

Using Volunteered Geographic Information and Nighttime Light Remote Sensing Data to Identify Tourism Areas of Interest

Author

Listed:
  • Bidur Devkota

    (School of Engineering and Technology, Department of Information and Communication Technologies, Asian Institute of Technology, Post Box No 4, Pathumthani 12120, Thailand)

  • Hiroyuki Miyazaki

    (School of Engineering and Technology, Department of Information and Communication Technologies, Asian Institute of Technology, Post Box No 4, Pathumthani 12120, Thailand
    Center for Spatial Information Science, Tokyo University, Chiba 277-8568, Japan)

  • Apichon Witayangkurn

    (School of Engineering and Technology, Department of Information and Communication Technologies, Asian Institute of Technology, Post Box No 4, Pathumthani 12120, Thailand
    Center for Spatial Information Science, Tokyo University, Chiba 277-8568, Japan)

  • Sohee Minsun Kim

    (School of Environment, Resources, and Development, Department of Development and Sustainability, Asian Institute of Technology, Post Box No 4, Pathumthani 12120, Thailand)

Abstract

Easy, economical, and near-real-time identification of tourism areas of interest is useful for tourism planning and management. Numerous studies have been accomplished to analyze and evaluate the tourism conditions of a place using free and near-real-time data sources such as social media. This study demonstrates the potential of volunteered geographic information, mainly Twitter and OpenStreetMap, for discovering tourism areas of interest. Active tweet clusters generated using Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm and building footprint information are used to identify touristic places that ensure the availability of basic essential facilities for travelers. Furthermore, an investigation is made to examine the usefulness of nighttime light remotely sensed data to recognize such tourism areas. The study successfully discovered important tourism areas in urban and remote regions in Nepal which have relatively low social media penetration. The effectiveness of the proposed framework is examined using the F1 measure. The accuracy assessment showed F1 score of 0.72 and 0.74 in the selected regions. Hence, the outcomes of this study can provide a valuable reference for various stakeholders such as tourism planners, urban planners, and so on.

Suggested Citation

  • Bidur Devkota & Hiroyuki Miyazaki & Apichon Witayangkurn & Sohee Minsun Kim, 2019. "Using Volunteered Geographic Information and Nighttime Light Remote Sensing Data to Identify Tourism Areas of Interest," Sustainability, MDPI, vol. 11(17), pages 1-29, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4718-:d:262192
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/17/4718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/17/4718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. José María Martín Martín & Jose Manuel Guaita Martínez & Valentín Molina Moreno & Antonio Sartal Rodríguez, 2019. "An Analysis of the Tourist Mobility in the Island of Lanzarote: Car Rental Versus More Sustainable Transportation Alternatives," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    2. Yu Liu & Xi Liu & Song Gao & Li Gong & Chaogui Kang & Ye Zhi & Guanghua Chi & Li Shi, 2015. "Social Sensing: A New Approach to Understanding Our Socioeconomic Environments," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 105(3), pages 512-530, May.
    3. Athanasios Koutras & Ioannis A. Nikas & Alkiviadis Panagopoulos, 2019. "Towards Developing Smart Cities: Evidence from GIS Analysis on Tourists’ Behavior Using Social Network Data in the City of Athens," Springer Proceedings in Business and Economics, in: Vicky Katsoni & Marival Segarra-Oña (ed.), Smart Tourism as a Driver for Culture and Sustainability, chapter 0, pages 407-418, Springer.
    4. Luis Encalada & Inês Boavida-Portugal & Carlos Cardoso Ferreira & Jorge Rocha, 2017. "Identifying Tourist Places of Interest Based on Digital Imprints: Towards a Sustainable Smart City," Sustainability, MDPI, vol. 9(12), pages 1-19, December.
    5. J. Vernon Henderson & Adam Storeygard & David N. Weil, 2012. "Measuring Economic Growth from Outer Space," American Economic Review, American Economic Association, vol. 102(2), pages 994-1028, April.
    6. Vicky Katsoni & Marival Segarra-Oña (ed.), 2019. "Smart Tourism as a Driver for Culture and Sustainability," Springer Proceedings in Business and Economics, Springer, number 978-3-030-03910-3, March.
    7. Daniel Preoţiuc-Pietro & Svitlana Volkova & Vasileios Lampos & Yoram Bachrach & Nikolaos Aletras, 2015. "Studying User Income through Language, Behaviour and Affect in Social Media," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-17, September.
    8. Mordechai Haklay, 2010. "How Good is Volunteered Geographical Information? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets," Environment and Planning B, , vol. 37(4), pages 682-703, August.
    9. Asamaporn Sitthi & Masahiko Nagai & Matthew Dailey & Sarawut Ninsawat, 2016. "Exploring Land Use and Land Cover of Geotagged Social-Sensing Images Using Naive Bayes Classifier," Sustainability, MDPI, vol. 8(9), pages 1-22, September.
    10. Charlotta Mellander & José Lobo & Kevin Stolarick & Zara Matheson, 2015. "Night-Time Light Data: A Good Proxy Measure for Economic Activity?," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-18, October.
    11. Krista Merry & Pete Bettinger, 2019. "Smartphone GPS accuracy study in an urban environment," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-19, July.
    12. Yeran Sun & Hongchao Fan & Ming Li & Alexander Zipf, 2016. "Identifying the city center using human travel flows generated from location-based social networking data," Environment and Planning B, , vol. 43(3), pages 480-498, May.
    13. Vu, Huy Quan & Li, Gang & Law, Rob & Ye, Ben Haobin, 2015. "Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos," Tourism Management, Elsevier, vol. 46(C), pages 222-232.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Bachir Diop & Jérôme Chenal & Stéphane Cédric Koumetio Tekouabou & Rida Azmi, 2022. "Crowdsourcing Public Engagement for Urban Planning in the Global South: Methods, Challenges and Suggestions for Future Research," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    2. Guillermo Rey Gozalo & Enrique Suárez & Alexandra L. Montenegro & Jorge P. Arenas & Juan Miguel Barrigón Morillas & David Montes González, 2020. "Noise Estimation Using Road and Urban Features," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    3. Pengpeng Chang & Xueru Pang & Xiong He & Yiting Zhu & Chunshan Zhou, 2022. "Exploring the Spatial Relationship between Nighttime Light and Tourism Economy: Evidence from 31 Provinces in China," Sustainability, MDPI, vol. 14(12), pages 1-22, June.
    4. Pattama Krataithong & Chutiporn Anutariya & Marut Buranarach, 2022. "A Taxi Trajectory and Social Media Data Management Platform for Tourist Behavior Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xucai Zhang & Yeran Sun & Ting On Chan & Ying Huang & Anyao Zheng & Zhang Liu, 2021. "Exploring Impact of Surrounding Service Facilities on Urban Vibrancy Using Tencent Location-Aware Data: A Case of Guangzhou," Sustainability, MDPI, vol. 13(2), pages 1-23, January.
    2. Boslett, Andrew & Hill, Elaine & Ma, Lala & Zhang, Lujia, 2021. "Rural light pollution from shale gas development and associated sleep and subjective well-being," Resource and Energy Economics, Elsevier, vol. 64(C).
    3. Natalya Rybnikova & Boris Portnov, 2015. "Using light-at-night (LAN) satellite data for identifying clusters of economic activities in Europe," Letters in Spatial and Resource Sciences, Springer, vol. 8(3), pages 307-334, November.
    4. Krittaya Sangkasem & Nattapong Puttanapong, 2022. "Analysis of spatial inequality using DMSP‐OLS nighttime‐light satellite imageries: A case study of Thailand," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(4), pages 828-849, August.
    5. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    6. Dickinson, Jeffrey, 2020. "Planes, Trains, and Automobiles: What Drives Human-Made Light?," MPRA Paper 103504, University Library of Munich, Germany.
    7. Wu, Yu & Sills, Erin O., 2018. "The Evolving Relationship between Market Access and Deforestation on the Amazon Frontier," 2018 Annual Meeting, August 5-7, Washington, D.C. 274317, Agricultural and Applied Economics Association.
    8. Anna Bruederle & Roland Hodler, 2018. "Nighttime lights as a proxy for human development at the local level," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-22, September.
    9. Piotr Wójcik & Krystian Andruszek, 2022. "Predicting intra‐urban well‐being from space with nonlinear machine learning," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(4), pages 891-913, August.
    10. Qian Chen & Tingting Ye & Naizhuo Zhao & Mingjun Ding & Zutao Ouyang & Peng Jia & Wenze Yue & Xuchao Yang, 2021. "Mapping China’s regional economic activity by integrating points-of-interest and remote sensing data with random forest," Environment and Planning B, , vol. 48(7), pages 1876-1894, September.
    11. José García-Montalvo & Marta Reynal-Querol & Juan Carlos Muñoz Mora, 2021. "Measuring Inequality from Above," Working Papers 1252, Barcelona School of Economics.
    12. Jaqueson K. Galimberti, 2020. "Forecasting GDP Growth from Outer Space," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(4), pages 697-722, August.
    13. Pape,Utz Johann & Wollburg,Philip Randolph, 2019. "Estimation of Poverty in Somalia Using Innovative Methodologies," Policy Research Working Paper Series 8735, The World Bank.
    14. Utz Pape & Luca Parisotto, 2019. "Estimating Poverty in a Fragile Context – The High Frequency Survey in South Sudan," HiCN Working Papers 305, Households in Conflict Network.
    15. Juan Jose Miranda & Oscar A. Ishizawa & Hongrui Zhang, 2020. "Understanding the Impact Dynamics of Windstorms on Short-Term Economic Activity from Night Lights in Central America," Economics of Disasters and Climate Change, Springer, vol. 4(3), pages 657-698, October.
    16. Kammerlander, Andreas & Schulze, Günther G., 2023. "Local economic growth and infant mortality," Journal of Health Economics, Elsevier, vol. 87(C).
    17. Christian Otchia & Simplice Asongu, 2020. "Industrial growth in sub-Saharan Africa: evidence from machine learning with insights from nightlight satellite images," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 48(8), pages 1421-1441, December.
    18. Russ, Jason, 2020. "Water runoff and economic activity: The impact of water supply shocks on growth," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    19. Choumert-Nkolo, Johanna & Combes Motel, Pascale & Le Roux, Leonard, 2019. "Stacking up the ladder: A panel data analysis of Tanzanian household energy choices," World Development, Elsevier, vol. 115(C), pages 222-235.
    20. Xu Shengxia & Liu Qiang & Lu Xiaoli, 2021. "Measuring the Imbalance of Regional Development from Outer Space in China," Journal of Systems Science and Information, De Gruyter, vol. 9(5), pages 519-532, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4718-:d:262192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.