IDEAS home Printed from https://ideas.repec.org/a/spr/infott/v27y2025i3d10.1007_s40558-025-00322-6.html
   My bibliography  Save this article

Spatio-Temporal Tourist Behavior (STTB) under digital footprints: a systematic literature review

Author

Listed:
  • Yuwei Xiao

    (Capital Normal University, College of Resource Environment & Tourism)

  • Shan Jiang

    (Capital Normal University, College of Resource Environment & Tourism)

  • Zhenxin Zhang

    (Capital Normal University, College of Resource Environment & Tourism)

Abstract

Spatio-Temporal Tourist Behavior (STTB) research focuses on interpreting and predicting tourist behavior patterns in a spatial and temporal framework. In recent years, digital techniques have been applied to STTB, enabling remarkable progress. This paper categorizes and lists the mainstream technologies for tracking and analyzing the spatio-temporal patterns of tourists, clarifying the precautions and principles for their application. To be specifically, there are three facets were investigated: (a) The characteristics of TDF data in STTB, including how data are collected and their advantages and limitations; (b) The technologies and methods used to support different research questions; and (c) The research gaps and the research trends of TDF data in behavioral research. The findings provide a thorough understanding of the state of TDF data application in STTB, giving valuable insights to drive growth both in theory and practice.

Suggested Citation

  • Yuwei Xiao & Shan Jiang & Zhenxin Zhang, 2025. "Spatio-Temporal Tourist Behavior (STTB) under digital footprints: a systematic literature review," Information Technology & Tourism, Springer, vol. 27(3), pages 517-545, September.
  • Handle: RePEc:spr:infott:v:27:y:2025:i:3:d:10.1007_s40558-025-00322-6
    DOI: 10.1007/s40558-025-00322-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40558-025-00322-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40558-025-00322-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wei Dong & Qi Kang & Guangkui Wang & Bin Zhang & Ping Liu, 2023. "Spatiotemporal behavior pattern differentiation and preference identification of tourists from the perspective of ecotourism destination based on the tourism digital footprint data," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-25, April.
    2. Qian Yao & Yong Shi & Hai Li & Jiahong Wen & Jianchao Xi & Qingwei Wang, 2020. "Understanding the Tourists’ Spatio-Temporal Behavior Using Open GPS Trajectory Data: A Case Study of Yuanmingyuan Park (Beijing, China)," Sustainability, MDPI, vol. 13(1), pages 1-13, December.
    3. Jose J Padilla & Hamdi Kavak & Christopher J Lynch & Ross J Gore & Saikou Y Diallo, 2018. "Temporal and spatiotemporal investigation of tourist attraction visit sentiment on Twitter," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-20, June.
    4. Anders Fredriksson & Gustavo Magalhães de Oliveira, 2019. "Impact evaluation using Difference-in-Differences," RAUSP Management Journal, Emerald Group Publishing Limited, vol. 54(4), pages 519-532, October.
    5. Versichele, Mathias & de Groote, Liesbeth & Claeys Bouuaert, Manuel & Neutens, Tijs & Moerman, Ingrid & Van de Weghe, Nico, 2014. "Pattern mining in tourist attraction visits through association rule learning on Bluetooth tracking data: A case study of Ghent, Belgium," Tourism Management, Elsevier, vol. 44(C), pages 67-81.
    6. Luis Encalada & Inês Boavida-Portugal & Carlos Cardoso Ferreira & Jorge Rocha, 2017. "Identifying Tourist Places of Interest Based on Digital Imprints: Towards a Sustainable Smart City," Sustainability, MDPI, vol. 9(12), pages 1-19, December.
    7. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    8. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    9. Raun, Janika & Ahas, Rein & Tiru, Margus, 2016. "Measuring tourism destinations using mobile tracking data," Tourism Management, Elsevier, vol. 57(C), pages 202-212.
    10. Orellana, Daniel & Bregt, Arnold K. & Ligtenberg, Arend & Wachowicz, Monica, 2012. "Exploring visitor movement patterns in natural recreational areas," Tourism Management, Elsevier, vol. 33(3), pages 672-682.
    11. Yang Xu & Jingyan Li & Jiaying Xue & Sangwon Park & Qingquan Li, 2021. "Tourism Geography through the Lens of Time Use: A Computational Framework Using Fine-Grained Mobile Phone Data," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 111(5), pages 1420-1444, July.
    12. Siyang Qin & Jie Man & Xuzhao Wang & Can Li & Honghui Dong & Xinquan Ge, 2019. "Applying Big Data Analytics to Monitor Tourist Flow for the Scenic Area Operation Management," Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-11, January.
    13. Jing Shi & Lei Xin & Yang Liu, 2020. "Simulation of tourists’ spatiotemporal behaviour and result validation with social media data," Transportation Planning and Technology, Taylor & Francis Journals, vol. 43(7), pages 698-716, October.
    14. Alessandro Crivellari & Euro Beinat, 2020. "LSTM-Based Deep Learning Model for Predicting Individual Mobility Traces of Short-Term Foreign Tourists," Sustainability, MDPI, vol. 12(1), pages 1-18, January.
    15. Chua, Alvin & Servillo, Loris & Marcheggiani, Ernesto & Moere, Andrew Vande, 2016. "Mapping Cilento: Using geotagged social media data to characterize tourist flows in southern Italy," Tourism Management, Elsevier, vol. 57(C), pages 295-310.
    16. Zheng, Weimin & Huang, Xiaoting & Li, Yuan, 2017. "Understanding the tourist mobility using GPS: Where is the next place?," Tourism Management, Elsevier, vol. 59(C), pages 267-280.
    17. Carolina Barros & Borja Moya-Gómez & Juan Carlos García-Palomares, 2019. "Identifying Temporal Patterns of Visitors to National Parks through Geotagged Photographs," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    18. Xia, Jianhong (Cecilia) & Zeephongsekul, Panlop & Packer, David, 2011. "Spatial and temporal modelling of tourist movements using Semi-Markov processes," Tourism Management, Elsevier, vol. 32(4), pages 844-851.
    19. Vu, Huy Quan & Li, Gang & Law, Rob & Ye, Ben Haobin, 2015. "Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos," Tourism Management, Elsevier, vol. 46(C), pages 222-232.
    20. De Cantis, Stefano & Ferrante, Mauro & Kahani, Alon & Shoval, Noam, 2016. "Cruise passengers' behavior at the destination: Investigation using GPS technology," Tourism Management, Elsevier, vol. 52(C), pages 133-150.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angela Chantre-Astaiza & Laura Fuentes-Moraleda & Ana Muñoz-Mazón & Gustavo Ramirez-Gonzalez, 2019. "Science Mapping of Tourist Mobility 1980–2019. Technological Advancements in the Collection of the Data for Tourist Traceability," Sustainability, MDPI, vol. 11(17), pages 1-32, August.
    2. Ana Muñoz-Mazón & Laura Fuentes-Moraleda & Angela Chantre-Astaiza & Marlon-Felipe Burbano-Fernandez, 2019. "The Study of Tourist Movements in Tourist Historic Cities: A Comparative Analysis of the Applicability of Four Different Tools," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    3. Huy Quan Vu & Shah Jahan Miah & Haiyang Xia & Gang Li & Birgit Muskat & Rob Law, 2023. "Advancing reliability assessment of venue-reference social media data for enhanced domestic tourism development," Information Technology & Tourism, Springer, vol. 25(3), pages 433-451, September.
    4. Tao Liu & Ying Zhang & Huan Zhang & Xiping Yang, 2021. "A Methodological Workflow for Deriving the Association of Tourist Destinations Based on Online Travel Reviews: A Case Study of Yunnan Province, China," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    5. Park, Sangwon & Xu, Yang & Jiang, Liu & Chen, Zhelin & Huang, Shuyi, 2020. "Spatial structures of tourism destinations: A trajectory data mining approach leveraging mobile big data," Annals of Tourism Research, Elsevier, vol. 84(C).
    6. Wei Dong & Qi Kang & Guangkui Wang & Bin Zhang & Ping Liu, 2023. "Spatiotemporal behavior pattern differentiation and preference identification of tourists from the perspective of ecotourism destination based on the tourism digital footprint data," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-25, April.
    7. Anne Hardy & Sarah Hyslop & Kate Booth & Brady Robards & Jagannath Aryal & Ulrike Gretzel & Richard Eccleston, 2017. "Tracking tourists’ travel with smartphone-based GPS technology: a methodological discussion," Information Technology & Tourism, Springer, vol. 17(3), pages 255-274, September.
    8. Pattama Krataithong & Chutiporn Anutariya & Marut Buranarach, 2022. "A Taxi Trajectory and Social Media Data Management Platform for Tourist Behavior Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    9. Koun Sugimoto & Kei Ota & Shohei Suzuki, 2019. "Visitor Mobility and Spatial Structure in a Local Urban Tourism Destination: GPS Tracking and Network analysis," Sustainability, MDPI, vol. 11(3), pages 1-17, February.
    10. Eujin-Julia Kim & Yongjun Jo & Youngeun Kang, 2018. "Are Touristic Attractions Well-Connected in an Olympic Host City? A Network Analysis Measurement of Visitor Movement Patterns in Gangneung, South Korea," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    11. Zheng, Weimin & Huang, Xiaoting & Li, Yuan, 2017. "Understanding the tourist mobility using GPS: Where is the next place?," Tourism Management, Elsevier, vol. 59(C), pages 267-280.
    12. Tarmo Kalvet & Maarja Olesk & Marek Tiits & Janika Raun, 2020. "Innovative Tools for Tourism and Cultural Tourism Impact Assessment," Sustainability, MDPI, vol. 12(18), pages 1-30, September.
    13. Eujin-Julia Kim & Youngeun Kang, 2020. "Spillover Effects of Mega-Events: The Influences of Residence, Transportation Mode, and Staying Period on Attraction Networks during Olympic Games," Sustainability, MDPI, vol. 12(3), pages 1-13, February.
    14. Tosporn Arreeras & Mikiharu Arimura & Takumi Asada & Saharat Arreeras, 2019. "Association Rule Mining Tourist-Attractive Destinations for the Sustainable Development of a Large Tourism Area in Hokkaido Using Wi-Fi Tracking Data," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    15. Wenping Liu & Chenlu Dong & Weijuan Chen, 2017. "Mapping and Quantifying Spatial and Temporal Dynamics and Bundles of Travel Flows of Residents Visiting Urban Parks," Sustainability, MDPI, vol. 9(8), pages 1-15, July.
    16. Kang, Sanghoon, 2016. "Associations between space–time constraints and spatial patterns of travels," Annals of Tourism Research, Elsevier, vol. 61(C), pages 127-141.
    17. Rodolfo Baggio & Miriam Scaglione, 2018. "Strategic visitor flows and destination management organization," Information Technology & Tourism, Springer, vol. 18(1), pages 29-42, April.
    18. Raun, Janika & Ahas, Rein & Tiru, Margus, 2016. "Measuring tourism destinations using mobile tracking data," Tourism Management, Elsevier, vol. 57(C), pages 202-212.
    19. Kádár, Bálint & Gede, Mátyás, 2021. "Tourism flows in large-scale destination systems," Annals of Tourism Research, Elsevier, vol. 87(C).
    20. Marta Crispino & Vincenzo Mariani, 2025. "A Tool to Nowcast Tourist Overnight Stays with Payment Data and Complementary Indicators," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 11(1), pages 285-312, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infott:v:27:y:2025:i:3:d:10.1007_s40558-025-00322-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.