IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i17p4617-d260792.html
   My bibliography  Save this article

Performance Evaluation and Investment Analysis for Container Port Sustainable Development in China: An Inverse DEA Approach

Author

Listed:
  • Yang Lin

    (School of Economics, Fujian Normal University, Fuzhou 350117, China)

  • Longzhong Yan

    (School of Economics, Fujian Normal University, Fuzhou 350117, China)

  • Ying-Ming Wang

    (Decision Sciences Institute, Fuzhou University, Fuzhou 350108, China)

Abstract

Container ports play an important role in international maritime trade. However, the rapid growth of the port and terminal industry has caused many environmental pollution problems. This paper intends to develop an inverse data envelopment analysis (IDEA) model for measuring container ports’ efficiency and analyzing their resource consumption by considering undesirable outputs. Statistical data from 16 main ports are empirically examined using the proposed method in accordance with the 13th Five-Year Plan in China. The results indicate that the proposed IDEA is a feasible approach for performance evaluation, and provides policymakers with insights into resource optimization of container ports. A comparative study with another DEA model is also discussed.

Suggested Citation

  • Yang Lin & Longzhong Yan & Ying-Ming Wang, 2019. "Performance Evaluation and Investment Analysis for Container Port Sustainable Development in China: An Inverse DEA Approach," Sustainability, MDPI, vol. 11(17), pages 1-13, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4617-:d:260792
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/17/4617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/17/4617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boussofiane, A. & Dyson, R. G. & Thanassoulis, E., 1991. "Applied data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 52(1), pages 1-15, May.
    2. Na, Joon-Ho & Choi, A-Young & Ji, Jianhua & Zhang, Dali, 2017. "Environmental efficiency analysis of Chinese container ports with CO2 emissions: An inseparable input-output SBM model," Journal of Transport Geography, Elsevier, vol. 65(C), pages 13-24.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Hung, Shiu-Wan & Lu, Wen-Min & Wang, Tung-Pao, 2010. "Benchmarking the operating efficiency of Asia container ports," European Journal of Operational Research, Elsevier, vol. 203(3), pages 706-713, June.
    5. Hidekazu Itoh, 2002. "Effeciency Changes at Major Container Ports in Japan: A Window Application of Data Envelopment Analysis," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 14(2), pages 133-152, July.
    6. Sun, Jiasen & Yuan, Yang & Yang, Rui & Ji, Xiang & Wu, Jie, 2017. "Performance evaluation of Chinese port enterprises under significant environmental concerns: An extended DEA-based analysis," Transport Policy, Elsevier, vol. 60(C), pages 75-86.
    7. Wei, Quanling & Zhang, Jianzhong & Zhang, Xiangsun, 2000. "An inverse DEA model for inputs/outputs estimate," European Journal of Operational Research, Elsevier, vol. 121(1), pages 151-163, February.
    8. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.
    9. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2006. "Introduction to Data Envelopment Analysis and Its Uses," Springer Books, Springer, number 978-0-387-29122-2, December.
    10. LaPlante, A.E. & Paradi, J.C., 2015. "Evaluation of bank branch growth potential using data envelopment analysis," Omega, Elsevier, vol. 52(C), pages 33-41.
    11. Song, Malin & An, Qingxian & Zhang, Wei & Wang, Zeya & Wu, Jie, 2012. "Environmental efficiency evaluation based on data envelopment analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4465-4469.
    12. Lee, Taehwee & Yeo, Gi-Tae & Thai, Vinh V., 2014. "Environmental efficiency analysis of port cities: Slacks-based measure data envelopment analysis approach," Transport Policy, Elsevier, vol. 33(C), pages 82-88.
    13. Mona Barat & Ghasem Tohidi & Masoud Sanei & Shabnam Razavyan, 2019. "Data envelopment analysis for decision making unit with nonhomogeneous internal structures: An application to the banking industry," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(5), pages 760-769, May.
    14. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    15. Hercules Haralambides & Girish Gujar, 2012. "On balancing supply chain efficiency and environmental impacts: An eco-DEA model applied to the dry port sector of India," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 14(1), pages 122-137, March.
    16. Tongzon, Jose, 2001. "Efficiency measurement of selected Australian and other international ports using data envelopment analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(2), pages 107-122, February.
    17. Sagarra, Marti & Mar-Molinero, Cecilio & Agasisti, Tommaso, 2017. "Exploring the efficiency of Mexican universities: Integrating Data Envelopment Analysis and Multidimensional Scaling," Omega, Elsevier, vol. 67(C), pages 123-133.
    18. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    19. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    20. Ali Emrouznejad & Guo-liang Yang & Gholam R. Amin, 2019. "A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in Chinese manufacturing industries," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(7), pages 1079-1090, July.
    21. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moghaddas, Zohreh & Tosarkani, Babak Mohamadpour & Yousefi, Samuel, 2022. "Resource reallocation for improving sustainable supply chain performance: An inverse data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 252(C).
    2. Jinxing Shen & Xuejun Feng & Kai Zhuang & Tong Lin & Yan Zhang & Peifang Wang, 2019. "Vertical Distribution of Particulates within the Near-Surface Layer of Dry Bulk Port and Influence Mechanism: A Case Study in China," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    3. Veterina Nosadila Riaventin & Sofyan Dwi Cahyo & Ivan Kristianto Singgih, 2021. "A Model for Developing Existing Ports Considering Economic Impact and Network Connectivity," Sustainability, MDPI, vol. 13(7), pages 1-17, March.
    4. Lixian Fan & Bingmei Gu, 2019. "Impacts of the Increasingly Strict Sulfur Limit on Compliance Option Choices: The Case Study of Chinese SECA," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    5. Shu-Chuan Chen & Da-Sheng Lee & Chien-Yi Huang, 2021. "Evaluating the Sustainable Operating Performance of Electronics Industry Groups: Taiwanese Firms in Mainland China," Sustainability, MDPI, vol. 13(21), pages 1-28, October.
    6. Ti-An Chen, 2022. "Business Performance Evaluation for Tourism Factory: Using DEA Approach and Delphi Method," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    7. Luigi Aldieri & Jonas Grafström & Concetto Paolo Vinci, 2021. "The Effect of Marshallian and Jacobian Knowledge Spillovers on Jobs in the Solar, Wind and Energy Efficiency Sector," Energies, MDPI, vol. 14(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evelin Krmac & Mozhgan Mansouri Kaleibar, 2023. "A comprehensive review of data envelopment analysis (DEA) methodology in port efficiency evaluation," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(4), pages 817-881, December.
    2. Mushtaq Taleb & Ruzelan Khalid & Ali Emrouznejad & Razamin Ramli, 2023. "Environmental efficiency under weak disposability: an improved super efficiency data envelopment analysis model with application for assessment of port operations considering NetZero," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6627-6656, July.
    3. Taleb, Mushtaq & Khalid, Ruzelan & Ramli, Razamin & Ghasemi, Mohammad Reza & Ignatius, Joshua, 2022. "An integrated bi-objective data envelopment analysis model for measuring returns to scale," European Journal of Operational Research, Elsevier, vol. 296(3), pages 967-979.
    4. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    5. Suzuki, Soushi & Nijkamp, Peter, 2016. "An evaluation of energy-environment-economic efficiency for EU, APEC and ASEAN countries: Design of a Target-Oriented DFM model with fixed factors in Data Envelopment Analysis," Energy Policy, Elsevier, vol. 88(C), pages 100-112.
    6. Sun, Jiasen & Yuan, Yang & Yang, Rui & Ji, Xiang & Wu, Jie, 2017. "Performance evaluation of Chinese port enterprises under significant environmental concerns: An extended DEA-based analysis," Transport Policy, Elsevier, vol. 60(C), pages 75-86.
    7. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    8. Xiang Liu & Jia Liu, 2016. "Measurement of Low Carbon Economy Efficiency with a Three-Stage Data Envelopment Analysis: A Comparison of the Largest Twenty CO 2 Emitting Countries," IJERPH, MDPI, vol. 13(11), pages 1-14, November.
    9. Jie Wu & Xiang Lu & Dong Guo & Liang Liang, 2017. "Slacks-Based Efficiency Measurements with Undesirable Outputs in Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1005-1021, July.
    10. Ning Zhang & Jong-Dae Kim, 2014. "Measuring sustainability by Energy Efficiency Analysis for Korean Power Companies: A Sequential Slacks-Based Efficiency Measure," Sustainability, MDPI, vol. 6(3), pages 1-13, March.
    11. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    12. Xiang Ji & Jiasen Sun & Qunwei Wang & Qianqian Yuan, 2019. "Revealing Energy Over-Consumption and Pollutant Over-Emission Behind GDP: A New Multi-criteria Sustainable Measure," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1391-1421, December.
    13. Noor Ramli & Susila Munisamy & Behrouz Arabi, 2013. "Scale directional distance function and its application to the measurement of eco-efficiency in the manufacturing sector," Annals of Operations Research, Springer, vol. 211(1), pages 381-398, December.
    14. Jun-Fei Chu & Jie Wu & Ma-Lin Song, 2018. "An SBM-DEA model with parallel computing design for environmental efficiency evaluation in the big data context: a transportation system application," Annals of Operations Research, Springer, vol. 270(1), pages 105-124, November.
    15. Yigang Wei & Yan Li & Meiyu Wu & Yingbo Li, 2020. "Progressing sustainable development of “the Belt and Road countries”: Estimating environmental efficiency based on the Super‐slack‐based measure model," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 521-539, July.
    16. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    17. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    18. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    19. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    20. Xiaowei Song & Yongpei Hao & Xiaodong Zhu, 2015. "Analysis of the Environmental Efficiency of the Chinese Transportation Sector Using an Undesirable Output Slacks-Based Measure Data Envelopment Analysis Model," Sustainability, MDPI, vol. 7(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4617-:d:260792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.