IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i14p3819-d247851.html
   My bibliography  Save this article

Social Acceptance of a Multi-Purpose Reservoir in a Recently Deglaciated Landscape in the Swiss Alps

Author

Listed:
  • Elke Kellner

    (Oeschger Centre for Climate Change Research, Institute of Geography, University of Bern, 3012 Bern, Switzerland)

Abstract

Climate change impacts such as shrinking glaciers and decreasing snow cover are expected to cause changes in the water balance throughout the 21st century. New proglacial lakes in recently deglaciated areas could be used for mitigation measures such as hydropower production and adaptation measures to temporarily retain water and transfer it seasonally to compensate for seasonal water scarcity. Such multi-purpose reservoirs could counterbalance the water currently provided by glaciers and the seasonal snowpack. However, new dam projects often face various conflicts due to their impact on nature, biodiversity, and the landscape. This article presents the determinants for social acceptance of the first reservoir in a recently deglaciated landscape in the Swiss Alps. Three main determinants were identified: (1) the forthcoming popular vote on the national Swiss Energy Strategy 2050; (2) the participatory process, which contains a polycentric design; and (3) the project area, which does not yet have protected status. The three determinants facilitate social acceptance of the dam project, but lead to less attention on using the stored water for multiple services. These findings have implications on sustainable development, because dams in recently deglaciated areas support the transition to renewable energy sources, but transform a natural resource system into a hydroelectric landscape.

Suggested Citation

  • Elke Kellner, 2019. "Social Acceptance of a Multi-Purpose Reservoir in a Recently Deglaciated Landscape in the Swiss Alps," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3819-:d:247851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/14/3819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/14/3819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ladenburg, Jacob & Möller, Bernd, 2011. "Attitude and acceptance of offshore wind farms—The influence of travel time and wind farm attributes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4223-4235.
    2. Wilfried Haeberli & Michael Buetler & Christian Huggel & Therese Lehmann Friedli & Yvonne Schaub & Anton J. Schleiss, 2016. "New lakes in deglaciating high-mountain regions – opportunities and risks," Climatic Change, Springer, vol. 139(2), pages 201-214, November.
    3. D. Kumar & M. Reddy, 2006. "Ant Colony Optimization for Multi-Purpose Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 879-898, December.
    4. Visschers, Vivianne H.M. & Siegrist, Michael, 2012. "Fair play in energy policy decisions: Procedural fairness, outcome fairness and acceptance of the decision to rebuild nuclear power plants," Energy Policy, Elsevier, vol. 46(C), pages 292-300.
    5. Wolsink, Maarten, 2007. "Wind power implementation: The nature of public attitudes: Equity and fairness instead of 'backyard motives'," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1188-1207, August.
    6. Malesios, Chrisovalantis & Arabatzis, Garyfallos, 2010. "Small hydropower stations in Greece: The local people's attitudes in a mountainous prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2492-2510, December.
    7. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    8. Sharma, Ameesh Kumar & Thakur, N.S., 2015. "Resource potential and development of small hydro power projects in Jammu and Kashmir in the western Himalayan region: India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1354-1368.
    9. Arabatzis, Garyfallos & Myronidis, Dimitris, 2011. "Contribution of SHP Stations to the development of an area and their social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3909-3917.
    10. M. Zemp & M. Huss & E. Thibert & N. Eckert & R. McNabb & J. Huber & M. Barandun & H. Machguth & S. U. Nussbaumer & I. Gärtner-Roer & L. Thomson & F. Paul & F. Maussion & S. Kutuzov & J. G. Cogley, 2019. "Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016," Nature, Nature, vol. 568(7752), pages 382-386, April.
    11. Kataria, Mitesh, 2009. "Willingness to pay for environmental improvements in hydropower regulated rivers," Energy Economics, Elsevier, vol. 31(1), pages 69-76, January.
    12. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2019. "The role of glacier retreat for Swiss hydropower production," Renewable Energy, Elsevier, vol. 132(C), pages 615-627.
    13. Söderholm, Patrik & Ek, Kristina & Pettersson, Maria, 2007. "Wind power development in Sweden: Global policies and local obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 365-400, April.
    14. Boon, Frank Pieter & Dieperink, Carel, 2014. "Local civil society based renewable energy organisations in the Netherlands: Exploring the factors that stimulate their emergence and development," Energy Policy, Elsevier, vol. 69(C), pages 297-307.
    15. Sternberg, R., 2010. "Hydropower's future, the environment, and global electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 713-723, February.
    16. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    17. Devine-Wright, Patrick & Batel, Susana & Aas, Oystein & Sovacool, Benjamin & Labelle, Michael Carnegie & Ruud, Audun, 2017. "A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage," Energy Policy, Elsevier, vol. 107(C), pages 27-31.
    18. Labay, Duncan G & Kinnear, Thomas C, 1981. "Exploring the Consumer Decision Process in the Adoption of Solar Energy Systems," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 8(3), pages 271-278, December.
    19. Dermont, Clau & Ingold, Karin & Kammermann, Lorenz & Stadelmann-Steffen, Isabelle, 2017. "Bringing the policy making perspective in: A political science approach to social acceptance," Energy Policy, Elsevier, vol. 108(C), pages 359-368.
    20. Botelho, Anabela & Ferreira, Paula & Lima, Fátima & Pinto, Lígia M. Costa & Sousa, Sara, 2017. "Assessment of the environmental impacts associated with hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 896-904.
    21. Luis Mata & June Budhooram, 2007. "Complementarity between mitigation and adaptation: the water sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 799-807, June.
    22. Perlaviciute, Goda & Steg, Linda, 2014. "Contextual and psychological factors shaping evaluations and acceptability of energy alternatives: Integrated review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 361-381.
    23. Juran Ahmed & Arup Sarma, 2005. "Genetic Algorithm for Optimal Operating Policy of a Multipurpose Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(2), pages 145-161, April.
    24. Hess, Christoph Ernst Emil & Fenrich, Eva, 2017. "Socio-environmental conflicts on hydropower: The São Luiz do Tapajós project in Brazil," Environmental Science & Policy, Elsevier, vol. 73(C), pages 20-28.
    25. Jonas Savelsberg & Moritz Schillinger & Ingmar Schlecht & Hannes Weigt, 2018. "The Impact of Climate Change on Swiss Hydropower," Sustainability, MDPI, vol. 10(7), pages 1-23, July.
    26. Andrea Klinglmair & Markus Gilbert Bliem & Roy Brouwer, 2015. "Exploring the public value of increased hydropower use: a choice experiment study for Austria," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 4(3), pages 315-336, November.
    27. Friedl, Christina & Reichl, Johannes, 2016. "Realizing energy infrastructure projects – A qualitative empirical analysis of local practices to address social acceptance," Energy Policy, Elsevier, vol. 89(C), pages 184-193.
    28. Maruyama, Yasushi & Nishikido, Makoto & Iida, Tetsunari, 2007. "The rise of community wind power in Japan: Enhanced acceptance through social innovation," Energy Policy, Elsevier, vol. 35(5), pages 2761-2769, May.
    29. Daniel Ehrbar & Lukas Schmocker & David F. Vetsch & Robert M. Boes, 2018. "Hydropower Potential in the Periglacial Environment of Switzerland under Climate Change," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    30. Rama Mehta & Sharad Jain, 2009. "Optimal Operation of a Multi-Purpose Reservoir Using Neuro-Fuzzy Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 509-529, February.
    31. Ana María González & Harrison Sandoval & Pilar Acosta & Felipe Henao, 2016. "On the Acceptance and Sustainability of Renewable Energy Projects—A Systems Thinking Perspective," Sustainability, MDPI, vol. 8(11), pages 1-21, November.
    32. Plum, Christiane & Olschewski, Roland & Jobin, Marilou & van Vliet, Oscar, 2019. "Public preferences for the Swiss electricity system after the nuclear phase-out: A choice experiment," Energy Policy, Elsevier, vol. 130(C), pages 181-196.
    33. Kumar, Deepak & Katoch, S.S., 2015. "Small hydropower development in western Himalayas: Strategy for faster implementation," Renewable Energy, Elsevier, vol. 77(C), pages 571-578.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tabi, Andrea & Wüstenhagen, Rolf, 2017. "Keep it local and fish-friendly: Social acceptance of hydropower projects in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 763-773.
    2. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    3. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    4. Venus, Terese E. & Hinzmann, Mandy & Bakken, Tor Haakon & Gerdes, Holger & Godinho, Francisco Nunes & Hansen, Bendik & Pinheiro, António & Sauer, Johannes, 2020. "The public's perception of run-of-the-river hydropower across Europe," Energy Policy, Elsevier, vol. 140(C).
    5. Mayeda, A.M. & Boyd, A.D., 2020. "Factors influencing public perceptions of hydropower projects: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. van Rijnsoever, Frank J. & van Mossel, Allard & Broecks, Kevin P.F., 2015. "Public acceptance of energy technologies: The effects of labeling, time, and heterogeneity in a discrete choice experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 817-829.
    7. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    8. von Wirth, Timo & Gislason, Linda & Seidl, Roman, 2018. "Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2618-2628.
    9. Grashof, Katherina, 2019. "Are auctions likely to deter community wind projects? And would this be problematic?," Energy Policy, Elsevier, vol. 125(C), pages 20-32.
    10. Dobers, Geesche M., 2019. "Acceptance of biogas plants taking into account space and place," Energy Policy, Elsevier, vol. 135(C).
    11. Höffken, Johanna I., 2014. "A closer look at small hydropower projects in India: Social acceptability of two storage-based projects in Karnataka," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 155-166.
    12. van Rijnsoever, Frank J. & Farla, Jacco C.M., 2014. "Identifying and explaining public preferences for the attributes of energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 71-82.
    13. Tsantopoulos, Georgios & Arabatzis, Garyfallos & Tampakis, Stilianos, 2014. "Public attitudes towards photovoltaic developments: Case study from Greece," Energy Policy, Elsevier, vol. 71(C), pages 94-106.
    14. Haggett, Claire, 2011. "Understanding public responses to offshore wind power," Energy Policy, Elsevier, vol. 39(2), pages 503-510, February.
    15. Arndt, Christoph, 2023. "Climate change vs energy security? The conditional support for energy sources among Western Europeans," Energy Policy, Elsevier, vol. 174(C).
    16. Rohe, Sebastian & Chlebna, Camilla, 2021. "A spatial perspective on the legitimacy of a technological innovation system: Regional differences in onshore wind energy," Energy Policy, Elsevier, vol. 151(C).
    17. Berka, Anna L. & Creamer, Emily, 2018. "Taking stock of the local impacts of community owned renewable energy: A review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3400-3419.
    18. Tampakis, Stilianos & Τsantopoulos, Georgios & Arabatzis, Garyfallos & Rerras, Ioannis, 2013. "Citizens’ views on various forms of energy and their contribution to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 473-482.
    19. Samiha Mjahed Hammami & Sahar Chtourou & Heyam Al Moosa, 2018. "A holistic approach to understanding the acceptance of a community‐based renewable energy project: A pathway to sustainability for Tunisia's rural region," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1535-1545, December.
    20. Caporale, Diana & De Lucia, Caterina, 2015. "Social acceptance of on-shore wind energy in Apulia Region (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1378-1390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3819-:d:247851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.