IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4855-d191771.html
   My bibliography  Save this article

Optimal Battery Recycling Strategy for Electric Vehicle under Government Subsidy in China

Author

Listed:
  • Yuan Shao

    (School of Management, Wuhan University of Science and Technology, Wuhan 430081, China)

  • Xudong Deng

    (School of Management, Wuhan University of Science and Technology, Wuhan 430081, China)

  • Qiankai Qing

    (School of Economics and Management, South China Normal University, Guangzhou 510006, China)

  • Yajuan Wang

    (School of Management, Wuhan University of Science and Technology, Wuhan 430081, China)

Abstract

Motivated by the increasing environmental concerns about the used electric vehicle batteries in China, an electric vehicle manufacturer’s battery recycling strategy under government subsidy was studied. A consumer utility function was used to capture consumer environmental awareness associated with battery recycling and the game-theoretical approach was applied to analyze the interaction between the government and the manufacturer. It was found that, with an exogenous government subsidy, the manufacturer either recycles all the batteries, or it does not recycle any batteries if the impact of the recycling scale on costs is unremarkable; otherwise, the manufacturer recycles some used batteries when the benefit from recycling is moderate. Interestingly, an increased subsidy causes the manufacturer’s battery recycling rate to decrease if the subsidy is sufficiently large. When the government subsidy is endogenously, either full recycling, no recycling, or partial recycling can still arise. The optimal battery recycling rate and social welfare are lower in a non-cooperative game than in a cooperative game if the benefit from recycling is relatively low. The main findings were numerically justified with realistic subsidy data in China. The numerical results indicate: (1) the optimal battery recycling rate locates in a closed interval from 0 to 1 given an exogenous or an endogenous government subsidy, and it decreases with the subsidy when the subsidy is not less than 50% of the production cost of electric vehicle; (2) the social welfare first increases to a maximum value and then decreases as the subsidy increases; and (3) the optimal battery recycling rate increases significantly and the social welfare is improved when there is cooperation between the government and the manufacturer.

Suggested Citation

  • Yuan Shao & Xudong Deng & Qiankai Qing & Yajuan Wang, 2018. "Optimal Battery Recycling Strategy for Electric Vehicle under Government Subsidy in China," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4855-:d:191771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4855/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4855/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoxue Zheng & Haiyan Lin & Zhi Liu & Dengfeng Li & Carlos Llopis-Albert & Shouzhen Zeng, 2018. "Manufacturing Decisions and Government Subsidies for Electric Vehicles in China: A Maximal Social Welfare Perspective," Sustainability, MDPI, vol. 10(3), pages 1-28, March.
    2. Yang, Jie & Dong, Jing & Hu, Liang, 2018. "Design government incentive schemes for promoting electric taxis in China," Energy Policy, Elsevier, vol. 115(C), pages 1-11.
    3. Gu, Huaying & Liu, Zhixue & Qing, Qiankai, 2017. "Optimal electric vehicle production strategy under subsidy and battery recycling," Energy Policy, Elsevier, vol. 109(C), pages 579-589.
    4. Assunção, André & Moura, Pedro S. & de Almeida, Aníbal T., 2016. "Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy," Applied Energy, Elsevier, vol. 181(C), pages 120-131.
    5. Dongxue Guo & Yi He & Yuanyuan Wu & Qingyun Xu, 2016. "Analysis of Supply Chain under Different Subsidy Policies of the Government," Sustainability, MDPI, vol. 8(12), pages 1-18, December.
    6. Jian Huang & Mingming Leng & Liping Liang & Jian Liu, 2013. "Promoting electric automobiles: supply chain analysis under a government’s subsidy incentive scheme," IISE Transactions, Taylor & Francis Journals, vol. 45(8), pages 826-844.
    7. Luo, Chunlin & Leng, Mingming & Huang, Jian & Liang, Liping, 2014. "Supply chain analysis under a price-discount incentive scheme for electric vehicles," European Journal of Operational Research, Elsevier, vol. 235(1), pages 329-333.
    8. Nicholas C. Petruzzi & Maqbool Dada, 1999. "Pricing and the Newsvendor Problem: A Review with Extensions," Operations Research, INFORMS, vol. 47(2), pages 183-194, April.
    9. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2016. "The effect of policy incentives on electric vehicle adoption," Energy Policy, Elsevier, vol. 94(C), pages 94-103.
    10. Li, Wenbo & Long, Ruyin & Chen, Hong, 2016. "Consumers’ evaluation of national new energy vehicle policy in China: An analysis based on a four paradigm model," Energy Policy, Elsevier, vol. 99(C), pages 33-41.
    11. Gonseth, Camille & Cadot, Olivier & Mathys, Nicole A. & Thalmann, Philippe, 2015. "Energy-tax changes and competitiveness: The role of adaptive capacity," Energy Economics, Elsevier, vol. 48(C), pages 127-135.
    12. Tang, Yanyan & Zhang, Qi & Mclellan, Benjamin & Li, Hailong, 2018. "Study on the impacts of sharing business models on economic performance of distributed PV-Battery systems," Energy, Elsevier, vol. 161(C), pages 544-558.
    13. Linghong Zhang & Bowen Xue & Xiyu Liu, 2018. "Carbon Emission Reduction with Regard to Retailer’s Fairness Concern and Subsidies," Sustainability, MDPI, vol. 10(4), pages 1-28, April.
    14. Shao, Lulu & Yang, Jun & Zhang, Min, 2017. "Subsidy scheme or price discount scheme? Mass adoption of electric vehicles under different market structures," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1181-1195.
    15. David F. Drake & Paul R. Kleindorfer & Luk N. Van Wassenhove, 2016. "Technology Choice and Capacity Portfolios under Emissions Regulation," Production and Operations Management, Production and Operations Management Society, vol. 25(6), pages 1006-1025, June.
    16. Baiyun Yuan & Bingmei Gu & Jin Guo & Liangjie Xia & Chunming Xu, 2018. "The Optimal Decisions for a Sustainable Supply Chain with Carbon Information Asymmetry under Cap-and-Trade," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
    17. Siddiqui, Muhammad Shahid, 2015. "Environmental taxes and international spillovers: The case of a small open economy," Energy Economics, Elsevier, vol. 48(C), pages 70-80.
    18. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    19. Jia Wang & Xijia Huang, 2018. "The Optimal Carbon Reduction and Return Strategies under Carbon Tax Policy," Sustainability, MDPI, vol. 10(7), pages 1-14, July.
    20. Heymans, Catherine & Walker, Sean B. & Young, Steven B. & Fowler, Michael, 2014. "Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling," Energy Policy, Elsevier, vol. 71(C), pages 22-30.
    21. Hao, Han & Ou, Xunmin & Du, Jiuyu & Wang, Hewu & Ouyang, Minggao, 2014. "China’s electric vehicle subsidy scheme: Rationale and impacts," Energy Policy, Elsevier, vol. 73(C), pages 722-732.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen-Tien, Viet & Dai, Qiang & Harper, Gavin D.J. & Anderson, Paul A. & Elliott, Robert J.R., 2022. "Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy," Applied Energy, Elsevier, vol. 321(C).
    2. Xichen Lyu & Yingying Xu & Dian Sun, 2021. "An Evolutionary Game Research on Cooperation Mode of the NEV Power Battery Recycling and Gradient Utilization Alliance in the Context of China’s NEV Power Battery Retired Tide," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    3. Enci Wang & Jianyun Nie & Yuhan Wang, 2023. "Government Subsidy Strategies for the New Energy Vehicle Power Battery Recycling Industry," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    4. Jin, Tao & Jiang, Yulian & Liu, Xingwen, 2023. "Evolutionary game analysis of the impact of dynamic dual credit policy on new energy vehicles after subsidy cancellation," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    5. Xuan Zhao & Benhong Peng & Chaoyu Zheng & Anxia Wan, 2022. "Closed-loop supply chain pricing strategy for electric vehicle batteries recycling in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7725-7752, June.
    6. Juntao Wang & Wenhua Li & Nozomu Mishima, 2023. "Optimal Decisions of Electric Vehicle Closed-Loop Supply Chain under Government Subsidy and Varied Consumers’ Green Awareness," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    7. Peng Xing & Junzhu Yao, 2022. "Power Battery Echelon Utilization and Recycling Strategy for New Energy Vehicles Based on Blockchain Technology," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    8. John Baffoe-Bonnie & Fidel Ezeala-Harrison, 2023. "Analysis of Optimal Solid Waste Recycling Policy: Evidence from U.S. Using Panel Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 13(3), pages 1-2.
    9. Wang, Jian & He, Shulin, 2023. "Government interventions in closed-loop supply chains with modularity design," International Journal of Production Economics, Elsevier, vol. 264(C).
    10. Choi, Hyunhong & Koo, Yoonmo, 2023. "New technology product introduction strategy with considerations for consumer-targeted policy intervention and new market entrant," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    11. Li Zhang & Ping Gao & Yongtao Zhou & Yuchuan Zhang & Junhua Wang, 2019. "Surviving through Incubation Based on Entrepreneurship-Specific Human Capital Development: The Moderating Role of Tenants’ Network Involvement," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    12. Ciwei Dong & Qingying Li & Bin Shen & Xun Tong, 2019. "Sustainability in Supply Chains with Behavioral Concerns," Sustainability, MDPI, vol. 11(15), pages 1-7, July.
    13. Fan, Zhi-Ping & Cao, Yue & Huang, Chun-Yong & Li, Yongli, 2020. "Pricing strategies of domestic and imported electric vehicle manufacturers and the design of government subsidy and tariff policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Huaying & Liu, Zhixue & Qing, Qiankai, 2017. "Optimal electric vehicle production strategy under subsidy and battery recycling," Energy Policy, Elsevier, vol. 109(C), pages 579-589.
    2. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Li, Jizi & Ku, Yaoyao & Yu, Yue & Liu, Chunling & Zhou, Yuping, 2020. "Optimizing production of new energy vehicles with across-chain cooperation under China’s dual credit policy," Energy, Elsevier, vol. 194(C).
    4. Fan, Zhi-Ping & Cao, Yue & Huang, Chun-Yong & Li, Yongli, 2020. "Pricing strategies of domestic and imported electric vehicle manufacturers and the design of government subsidy and tariff policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    5. Xiaoxue Zheng & Haiyan Lin & Zhi Liu & Dengfeng Li & Carlos Llopis-Albert & Shouzhen Zeng, 2018. "Manufacturing Decisions and Government Subsidies for Electric Vehicles in China: A Maximal Social Welfare Perspective," Sustainability, MDPI, vol. 10(3), pages 1-28, March.
    6. Kong, Deyang & Xia, Quhong & Xue, Yixi & Zhao, Xin, 2020. "Effects of multi policies on electric vehicle diffusion under subsidy policy abolishment in China: A multi-actor perspective," Applied Energy, Elsevier, vol. 266(C).
    7. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    8. Goldschmidt, Rüdiger & Richter, Andreas & Pfeil, Raphael, 2019. "Active stakeholder involvement and organisational tasks as factors for an effective communication and governance strategy in the promotion of e-taxis. Results from a field research lab," Energy Policy, Elsevier, vol. 135(C).
    9. Cheng, Fei & Chen, Tong & Chen, Qiao, 2022. "Cost-reducing strategy or emission-reducing strategy? The choice of low-carbon decisions under price threshold subsidy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    10. Nie, Qingyun & Zhang, Lihui & Li, Songrui, 2022. "How can personal carbon trading be applied in electric vehicle subsidies? A Stackelberg game method in private vehicles," Applied Energy, Elsevier, vol. 313(C).
    11. Deng Xu & Yong Long, 2019. "The Impact of Government Subsidy on Renewable Microgrid Investment Considering Double Externalities," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    12. Liu, Chang & Liu, Yuan & Zhang, Dayong & Xie, Chunping, 2022. "The capital market responses to new energy vehicle (NEV) subsidies: An event study on China," Energy Economics, Elsevier, vol. 105(C).
    13. Liangui Peng & Ying Li & Hui Yu, 2021. "Effects of Dual Credit Policy and Consumer Preferences on Production Decisions in Automobile Supply Chain," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    14. Yang, Shu & Cheng, Peng & Li, Jun & Wang, Shanyong, 2019. "Which group should policies target? Effects of incentive policies and product cognitions for electric vehicle adoption among Chinese consumers," Energy Policy, Elsevier, vol. 135(C).
    15. Shifeng Han & Xingzhong Xu, 2018. "NEV supply chain coordination and sustainability considering sales effort and risk aversion under the CVaR criterion," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-39, June.
    16. Zhang, Qi & Tang, Yanyan & Bunn, Derek & Li, Hailong & Li, Yaoming, 2021. "Comparative evaluation and policy analysis for recycling retired EV batteries with different collection modes," Applied Energy, Elsevier, vol. 303(C).
    17. Luo, Qi & Yin, Yunlei & Chen, Pengyu & Zhan, Zhenfei & Saigal, Romesh, 2022. "Dynamic subsidies for synergistic development of charging infrastructure and electric vehicle adoption," Transport Policy, Elsevier, vol. 129(C), pages 117-136.
    18. Wu, Wei & Lin, Boqiang & Xie, Chunping & Elliott, Robert J.R. & Radcliffe, Jonathan, 2020. "Does energy storage provide a profitable second life for electric vehicle batteries?," Energy Economics, Elsevier, vol. 92(C).
    19. Huang, Weixiang & Zhu, Han, 2021. "Performance evaluation and improvement for ZEV credit regulation in a competitive environment," Omega, Elsevier, vol. 102(C).
    20. Zixuan Wang & Xiuzhang Li, 2021. "Demand Subsidy versus Production Regulation: Development of New Energy Vehicles in a Competitive Environment," Mathematics, MDPI, vol. 9(11), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4855-:d:191771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.