IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i10p1757-d820670.html
   My bibliography  Save this article

Modeling Electricity Price Dynamics Using Flexible Distributions

Author

Listed:
  • Sherzod N. Tashpulatov

    (Department of Economics, Management and Humanities, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague, Czech Republic
    School of Business, University of New York in Prague, Londýnská 41, 120 00 Prague, Czech Republic)

Abstract

We consider the wholesale electricity market prices in England and Wales during its complete history, where price-cap regulation and divestment series were introduced at different points in time. We compare the impact of these regulatory reforms on the dynamics of electricity prices. For this purpose, we apply flexible distributions that account for asymmetry, heavy tails, and excess kurtosis usually observed in data or model residuals. The application of skew generalized error distribution is appropriate for our case study. We find that after the second series of divestments, price level and volatility are lower than during price-cap regulation and after the first series of divestments. This finding implies that a sufficient horizontal restructuring through divestment series may be superior to price-cap regulation. The conclusion could be interesting to other countries because the England and Wales electricity market served as the benchmark model for liberalizing energy markets worldwide.

Suggested Citation

  • Sherzod N. Tashpulatov, 2022. "Modeling Electricity Price Dynamics Using Flexible Distributions," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1757-:d:820670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/10/1757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/10/1757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bowden, Nicholas & Payne, James E., 2008. "Short term forecasting of electricity prices for MISO hubs: Evidence from ARIMA-EGARCH models," Energy Economics, Elsevier, vol. 30(6), pages 3186-3197, November.
    2. Leng, Na & Li, Jiang-Cheng, 2020. "Forecasting the crude oil prices based on Econophysics and Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    3. Paal Brevik Wangsness & Askill Harkjerr Halse, 2021. "The Impact of Electric Vehicle Density on Local Grid Costs: Empirical Evidence from Norway," The Energy Journal, , vol. 42(5), pages 149-168, September.
    4. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    5. Lízal, Lubomír M. & Tashpulatov, Sherzod N., 2014. "Do producers apply a capacity cutting strategy to increase prices? The case of the England and Wales electricity market," Energy Economics, Elsevier, vol. 43(C), pages 114-124.
    6. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    7. Anupam Dutta & Elie Bouri & David Roubaud, 2021. "Modelling the volatility of crude oil returns: Jumps and volatility forecasts," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 889-897, January.
    8. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    9. Hasanov, Akram Shavkatovich & Shaiban, Mohammed Sharaf & Al-Freedi, Ajab, 2020. "Forecasting volatility in the petroleum futures markets: A re-examination and extension," Energy Economics, Elsevier, vol. 86(C).
    10. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    11. Sherzod N. Tashpulatov, 2018. "The Impact of Behavioral and Structural Remedies on Electricity Prices: The Case of the England and Wales Electricity Market," Energies, MDPI, vol. 11(12), pages 1-24, December.
    12. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    13. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    14. Joanne Evans & Richard Green, 2003. "Why did British electricity prices fall after 1998?," Working Papers EP26, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    15. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    16. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
    17. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
    18. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    19. Shalini, Velappan & Prasanna, Krishna, 2016. "Impact of the financial crisis on Indian commodity markets: Structural breaks and volatility dynamics," Energy Economics, Elsevier, vol. 53(C), pages 40-57.
    20. Frömmel, Michael & Han, Xing & Kratochvil, Stepan, 2014. "Modeling the daily electricity price volatility with realized measures," Energy Economics, Elsevier, vol. 44(C), pages 492-502.
    21. Jung-Bin Su, 2014. "How to mitigate the impact of inappropriate distributional settings when the parametric value-at-risk approach is used," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 305-325, February.
    22. Tashpulatov, Sherzod N., 2015. "Analysis of electricity industry liberalization in Great Britain: How did the bidding behavior of electricity producers change?," Utilities Policy, Elsevier, vol. 36(C), pages 24-34.
    23. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    24. Ekaterina Abramova & Derek Bunn, 2020. "Forecasting the Intra-Day Spread Densities of Electricity Prices," Energies, MDPI, vol. 13(3), pages 1-31, February.
    25. Li, Jingjing & Tang, Ling & Wang, Shouyang, 2020. "Forecasting crude oil price with multilingual search engine data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    26. repec:dau:papers:123456789/1433 is not listed on IDEAS
    27. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    28. Ewing, Bradley T. & Malik, Farooq, 2017. "Modelling asymmetric volatility in oil prices under structural breaks," Energy Economics, Elsevier, vol. 63(C), pages 227-233.
    29. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    30. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
    31. Dennis Frestad & Fred Espen Benth & Steen Koekebakker, 2010. "Modeling Term Structure Dynamics in the Nordic Electricity Swap Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 53-86.
    32. Yingying Xu & Donald Lien, 2022. "Forecasting volatilities of oil and gas assets: A comparison of GAS, GARCH, and EGARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 259-278, March.
    33. Ioannidis, Filippos & Kosmidou, Kyriaki & Savva, Christos & Theodossiou, Panayiotis, 2021. "Electricity pricing using a periodic GARCH model with conditional skewness and kurtosis components," Energy Economics, Elsevier, vol. 95(C).
    34. Panayiotis Theodossiou, 2015. "Skewed Generalized Error Distribution of Financial Assets and Option Pricing," Multinational Finance Journal, Multinational Finance Journal, vol. 19(4), pages 223-266, December.
    35. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    36. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    37. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    38. Tashpulatov, Sherzod N., 2013. "Estimating the volatility of electricity prices: The case of the England and Wales wholesale electricity market," Energy Policy, Elsevier, vol. 60(C), pages 81-90.
    39. Fu, Yang & Zheng, Zeyu, 2020. "Volatility modeling and the asymmetric effect for China’s carbon trading pilot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    40. Sherzod N. Tashpulatov, 2021. "The Impact of Regulatory Reforms on Demand Weighted Average Prices," Mathematics, MDPI, vol. 9(10), pages 1-15, May.
    41. Terry Robinson & Andrzej Baniak, 2002. "The volatility of prices in the English and Welsh electricity pool," Applied Economics, Taylor & Francis Journals, vol. 34(12), pages 1487-1495.
    42. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    43. Kocaarslan, Baris & Soytas, Ugur, 2021. "Reserve currency and the volatility of clean energy stocks: The role of uncertainty," Energy Economics, Elsevier, vol. 104(C).
    44. Bruno Bosco & Lucia Parisio & Matteo Pelagatti, 2007. "Deregulated Wholesale Electricity Prices in Italy: An Empirical Analysis," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 13(4), pages 415-432, November.
    45. Ziel, Florian & Weron, Rafał, 2018. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks," Energy Economics, Elsevier, vol. 70(C), pages 396-420.
    46. repec:kap:iaecre:v:13:y:2007:i:4:p:415-432 is not listed on IDEAS
    47. Ekaterina Abramova & Derek Bunn, 2020. "Forecasting the Intra-Day Spread Densities of Electricity Prices," Papers 2002.10566, arXiv.org.
    48. Lin, Yu & Xiao, Yang & Li, Fuxing, 2020. "Forecasting crude oil price volatility via a HM-EGARCH model," Energy Economics, Elsevier, vol. 87(C).
    49. Lester Hadsell, Achla Marathe and Hany A. Shawky, 2004. "Estimating the Volatility of Wholesale Electricity Spot Prices in the US," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 23-40.
    50. Klein, Tony & Walther, Thomas, 2016. "Oil price volatility forecast with mixture memory GARCH," Energy Economics, Elsevier, vol. 58(C), pages 46-58.
    51. Nonejad, Nima, 2020. "Crude oil price volatility and equity return predictability: A comparative out-of-sample study," International Review of Financial Analysis, Elsevier, vol. 71(C).
    52. Ergen, Ibrahim & Rizvanoghlu, Islam, 2016. "Asymmetric impacts of fundamentals on the natural gas futures volatility: An augmented GARCH approach," Energy Economics, Elsevier, vol. 56(C), pages 64-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucía Inglada-Pérez & Sandra González y Gil, 2024. "A Study on the Nature of Complexity in the Spanish Electricity Market Using a Comprehensive Methodological Framework," Mathematics, MDPI, vol. 12(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sherzod N. Tashpulatov, 2021. "The Impact of Regulatory Reforms on Demand Weighted Average Prices," Mathematics, MDPI, vol. 9(10), pages 1-15, May.
    2. Sherzod N. Tashpulatov, 2021. "Modeling and Estimating Volatility of Day-Ahead Electricity Prices," Mathematics, MDPI, vol. 9(7), pages 1-11, March.
    3. Per B. Solibakke, 2022. "Step‐ahead spot price densities using daily synchronously reported prices and wind forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 17-42, January.
    4. Le Pen, Yannick & Sévi, Benoît, 2010. "Volatility transmission and volatility impulse response functions in European electricity forward markets," Energy Economics, Elsevier, vol. 32(4), pages 758-770, July.
    5. Ioannidis, Filippos & Kosmidou, Kyriaki & Savva, Christos & Theodossiou, Panayiotis, 2021. "Electricity pricing using a periodic GARCH model with conditional skewness and kurtosis components," Energy Economics, Elsevier, vol. 95(C).
    6. Sherzod N. Tashpulatov, 2018. "The Impact of Behavioral and Structural Remedies on Electricity Prices: The Case of the England and Wales Electricity Market," Energies, MDPI, vol. 11(12), pages 1-24, December.
    7. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    8. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    9. Nagaraj Naik & Biju R. Mohan, 2021. "Stock Price Volatility Estimation Using Regime Switching Technique-Empirical Study on the Indian Stock Market," Mathematics, MDPI, vol. 9(14), pages 1-18, July.
    10. Hasanov, Akram Shavkatovich & Poon, Wai Ching & Al-Freedi, Ajab & Heng, Zin Yau, 2018. "Forecasting volatility in the biofuel feedstock markets in the presence of structural breaks: A comparison of alternative distribution functions," Energy Economics, Elsevier, vol. 70(C), pages 307-333.
    11. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    12. Petrella, Andrea & Sapio, Alessandro, 2012. "Assessing the impact of forward trading, retail liberalization, and white certificates on the Italian wholesale electricity prices," Energy Policy, Elsevier, vol. 40(C), pages 307-317.
    13. Abdou Kâ Diongue & Dominique Guegan, 2008. "The k-factor Gegenbauer asymmetric Power GARCH approach for modelling electricity spot price dynamics," Post-Print halshs-00259225, HAL.
    14. Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
    15. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    16. Tashpulatov, Sherzod N., 2013. "Estimating the volatility of electricity prices: The case of the England and Wales wholesale electricity market," Energy Policy, Elsevier, vol. 60(C), pages 81-90.
    17. Liu, Heping & Shi, Jing, 2013. "Applying ARMA–GARCH approaches to forecasting short-term electricity prices," Energy Economics, Elsevier, vol. 37(C), pages 152-166.
    18. T. -N. Nguyen & M. -N. Tran & R. Kohn, 2020. "Recurrent Conditional Heteroskedasticity," Papers 2010.13061, arXiv.org, revised Jan 2022.
    19. Bekaert, Geert & Engstrom, Eric & Ermolov, Andrey, 2015. "Bad environments, good environments: A non-Gaussian asymmetric volatility model," Journal of Econometrics, Elsevier, vol. 186(1), pages 258-275.
    20. Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1757-:d:820670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.