IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i6p788-d1407973.html
   My bibliography  Save this article

A Multicriteria Decision Analysis Model for Optimal Land Uses: Guiding Farmers under the New European Union’s Common Agricultural Policy (2023–2027)

Author

Listed:
  • Asimina Kouriati

    (Department of Agricultural Economics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Anna Tafidou

    (Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Evgenia Lialia

    (Department of Agricultural Economics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Angelos Prentzas

    (Department of Agricultural Economics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Christina Moulogianni

    (Department of Agricultural Economics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Eleni Dimitriadou

    (Department of Agricultural Economics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Thomas Bournaris

    (Department of Agricultural Economics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

Focusing on sustainability, the new Common Agricultural Policy (2023–2027) sets ambitious goals for water management, as reducing irrigation water use is a vital issue. Cooperation among farmers, relevant authorities, and researchers plays a significant role in achieving these objectives. Therefore, this study applies a multicriteria mathematical programming model to optimize land use, considering water use, profit, labor, and cost. The model was applied to three farmer groups located in Greece and proved to be valuable in the implementation of irrigation water use. Using the same methodology, two additional cases of farmer groups that utilize drylands are presented in complementary ways to investigate how the new CAP affects non-irrigated land uses. Regarding the irrigated case, reducing water usage involves decreasing the land dedicated to crops characterized by high water demand, such as rice, corn, vetch, and clover. This adjustment stems from the necessity to replace irrigated land with non-irrigated land because climate change demands low water consumption for crops and underscores the importance of the new policy framework to promote sustainable agriculture. As for the non-irrigated case, achieving optimal farm planning entails reducing the cultivated areas of vetch, grassland, and sunflower. This result is driven by the need to increase crops receiving primary subsidies, highlighting the necessity for non-irrigated farms to enhance their profitability through the benefits provided by the Common Agricultural Policy. Lastly, it is important to note that this study significantly contributes to guiding decision-makers in achieving alternative agricultural land uses and farm plans while also aiding in the comprehension of the new cross-compliance rules.

Suggested Citation

  • Asimina Kouriati & Anna Tafidou & Evgenia Lialia & Angelos Prentzas & Christina Moulogianni & Eleni Dimitriadou & Thomas Bournaris, 2024. "A Multicriteria Decision Analysis Model for Optimal Land Uses: Guiding Farmers under the New European Union’s Common Agricultural Policy (2023–2027)," Land, MDPI, vol. 13(6), pages 1-22, June.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:788-:d:1407973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/6/788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/6/788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sumpsi, JoseMaria & Amador, Francisco & Romero, Carlos, 1997. "On farmers' objectives: A multi-criteria approach," European Journal of Operational Research, Elsevier, vol. 96(1), pages 64-71, January.
    2. Amador, Francisco & Sumpsi, Jose Maria & Romero, Carlos, 1998. "A Non-interactive Methodology to Assess Farmers' Utility Functions: An Application to Large Farms in Andalusia, Spain," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 25(1), pages 92-109.
    3. Viaggi, Davide & Finn, John Anthony & Kurz, Isabelle & Bartolini, Fabio, 2011. "Multicriteria analysis for environmental assessment of agri-environment schemes: How to use partial information from Mid-Term Evaluations?," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(01).
    4. Bartolini, F. & Bazzani, G.M. & Gallerani, V. & Raggi, M. & Viaggi, D., 2007. "The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models," Agricultural Systems, Elsevier, vol. 93(1-3), pages 90-114, March.
    5. Bartolini, Fabio & Finn, J. & Kurz, Isabelle & Samoggia, Antonella & Viaggi, Davide, 2005. "Using Information from Mid Term Evaluations of RDP for the Multicriteria Analysis of Agri-environmental Schemes," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24738, European Association of Agricultural Economists.
    6. Gomez-Limon, J. A. & Berbel, J., 2000. "Multicriteria analysis of derived water demand functions: a Spanish case study," Agricultural Systems, Elsevier, vol. 63(1), pages 49-72, January.
    7. Siskos, Y. & Matsatsinis, N. F. & Baourakis, G., 2001. "Multicriteria analysis in agricultural marketing: The case of French olive oil market," European Journal of Operational Research, Elsevier, vol. 130(2), pages 315-331, April.
    8. Stefano Bruzzese & Simone Blanc & Silvia Novelli & Filippo Brun, 2023. "A Multicriteria Analysis to Support Natural Resource Governance: The Case of Chestnut Forests," Resources, MDPI, vol. 12(3), pages 1-13, March.
    9. Hayashi, Kiyotada, 2000. "Multicriteria analysis for agricultural resource management: A critical survey and future perspectives," European Journal of Operational Research, Elsevier, vol. 122(2), pages 486-500, April.
    10. Romero, Carlos & Rehman, Tahir, 1987. "Natural Resource Management and the Use of Multiple Criteria Decision-Making Techniques: A Review," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 14(1), pages 61-89.
    11. Pashaei Kamali, Farahnaz & Borges, João A.R. & Meuwissen, Miranda P.M. & de Boer, Imke J.M. & Oude Lansink, Alfons G.J.M., 2017. "Sustainability assessment of agricultural systems: The validity of expert opinion and robustness of a multi-criteria analysis," Agricultural Systems, Elsevier, vol. 157(C), pages 118-128.
    12. Christina Moulogianni, 2022. "Comparison of Selected Mathematical Programming Models Used for Sustainable Land and Farm Management," Land, MDPI, vol. 11(8), pages 1-18, August.
    13. Riesgo, Laura & Gomez-Limon, Jose A., 2006. "Multi-criteria policy scenario analysis for public regulation of irrigated agriculture," Agricultural Systems, Elsevier, vol. 91(1-2), pages 1-28, November.
    14. Paul, Manashi & Negahban-Azar, Masoud & Shirmohammadi, Adel & Montas, Hubert, 2020. "Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision analysis," Agricultural Water Management, Elsevier, vol. 231(C).
    15. Basil Manos & Thomas Bournaris & Christina Moulogianni & Fedra Kiomourtzi, 2017. "Assessment of rural development plan measures in Greece," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 28(4), pages 448-471.
    16. Landriani, Loris & Agrifoglio, Rocco & Metallo, Concetta & Lepore, Luigi, 2022. "The role of knowledge in water service coproduction and policy implications," Utilities Policy, Elsevier, vol. 79(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basil Manos & Thomas Bournaris & Mohd Kamruzzaman & Moss Begum & Ara Anjuman & Jason Papathanasiou, 2006. "Regional Impact of Irrigation Water Pricing in Greece under Alternative Scenarios of European Policy: A Multicriteria Analysis," Regional Studies, Taylor & Francis Journals, vol. 40(9), pages 1055-1068.
    2. Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Riesgo, Laura, 2016. "Modeling at farm level: Positive Multi-Attribute Utility Programming," Omega, Elsevier, vol. 65(C), pages 17-27.
    3. Balali, Hamid & Khalilian, Sadegh & Viaggi, Davide & Bartolini, Fabio & Ahmadian, Majid, 2011. "Groundwater balance and conservation under different water pricing and agricultural policy scenarios: A case study of the Hamadan-Bahar plain," Ecological Economics, Elsevier, vol. 70(5), pages 863-872, March.
    4. Speelman, Stijn & Buysse, Jeroen & Farolfi, Stefano & Frija, Aymen & D'Haese, Marijke & D'Haese, Luc, 2009. "Estimating the impacts of water pricing on smallholder irrigators in North West Province, South Africa," Agricultural Water Management, Elsevier, vol. 96(11), pages 1560-1566, November.
    5. Montilla-López, Nazaret M. & Gómez-Limón, José A. & Gutiérrez-Martín, Carlos, 2018. "Sharing a river: Potential performance of a water bank for reallocating irrigation water," Agricultural Water Management, Elsevier, vol. 200(C), pages 47-59.
    6. Gomez-Limon, Jose Antonio & Berbel, Julio & Arriaza Balmón, Manuel, 2005. "MCDM Farm System Analysis for Public Management of Irrigated Agriculture," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24676, European Association of Agricultural Economists.
    7. André, Francisco J., 2009. "Indirect elicitation of non-linear multi-attribute utility functions. A dual procedure combined with DEA," Omega, Elsevier, vol. 37(4), pages 883-895, August.
    8. Christina Moulogianni, 2022. "Comparison of Selected Mathematical Programming Models Used for Sustainable Land and Farm Management," Land, MDPI, vol. 11(8), pages 1-18, August.
    9. Christina Moulogianni & Thomas Bournaris, 2021. "Assessing the Impacts of Rural Development Plan Measures on the Sustainability of Agricultural Holdings Using a PMP Model," Land, MDPI, vol. 10(5), pages 1-13, April.
    10. Francisco J. André & Inés Herrero & Laura Riesgo, 2007. "Using a modified DEA model to estimate the importance of objectives. An application to agricultural economics," Working Papers 07.09, Universidad Pablo de Olavide, Department of Economics.
    11. D. Latinopoulos, 2008. "Estimating the Potential Impacts of Irrigation Water Pricing Using Multicriteria Decision Making Modelling. An Application to Northern Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1761-1782, December.
    12. Jorge Dante de Prada & Tsoung-Chao Lee & Ariel Ricardo Angeli & José Manuel Cisneros & Alberto Cantero G., 2008. "Análisis multicriterio de la conservación de suelo: Aplicación a una cuenca representativa del centro argentino," Revista Iberoamericana de Economía Ecológica, Red Iberoamericana de Economía Ecológica, vol. 9, pages 45-59, Diciembre.
    13. Andre, Francisco J. & Riesgo, Laura, 2007. "A non-interactive elicitation method for non-linear multiattribute utility functions: Theory and application to agricultural economics," European Journal of Operational Research, Elsevier, vol. 181(2), pages 793-807, September.
    14. Chatzinikolaou, Parthena & Manos, Basil D. & Kiomourtzi, Fedra, 2014. "Assessment of Sustainable Production in rural areas," 2014 Third Congress, June 25-27, 2014, Alghero, Italy 173105, Italian Association of Agricultural and Applied Economics (AIEAA).
    15. Francisco J. André & Laura Riesgo, 2006. "A Duality Procedure to Elicit Nonlinear Multiattribute Utility Functions," Working Papers 06.02, Universidad Pablo de Olavide, Department of Economics.
    16. Gomez-Limon, Jose Antonio & Riesgo, Laura & Arriaza Balmón, Manuel, 2003. "Multi-Criteria Analysis Of Factors Use Level: The Case Of Water For Irrigation," 2003 Annual Meeting, August 16-22, 2003, Durban, South Africa 25836, International Association of Agricultural Economists.
    17. Gomez-Limon, Jose A. & Riesgo, Laura, 2004. "Irrigation water pricing: differential impacts on irrigated farms," Agricultural Economics, Blackwell, vol. 31(1), pages 47-66, July.
    18. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    19. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    20. Julio Berbel & M. Mesa-Jurado & Juan Pistón, 2011. "Value of Irrigation Water in Guadalquivir Basin (Spain) by Residual Value Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1565-1579, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:788-:d:1407973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.