IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i1p588-d718327.html
   My bibliography  Save this article

Nonlinear Influence of Chinese Real Estate Development on Environmental Pollution: New Evidence from Spatial Econometric Model

Author

Listed:
  • Wenqin Gong

    (School of Public Affairs, Chongqing University, Chongqing 400044, China)

  • Yu Kong

    (School of Public Affairs, Chongqing University, Chongqing 400044, China
    Center for Public Economy & Public Policy, Chongqing University, Chongqing 400044, China)

Abstract

Environmental pollution is a problem of universal concern throughout the globe. The development of real estate industry not only consumes huge resources, but also has close ties with high-consumption industries such as the construction industry. However, previous studies have rarely explored the impact of real estate development on environmental pollution. Therefore, this paper employs the entropy method to construct a comprehensive index of environmental pollution based on panel data of 31 provinces in China from 2000 to 2017, and empirically examines the impact of real estate development on environmental pollution. This article uses real estate investment to measure the development of the real estate industry. In view of the high spatial autocorrelation of environmental pollution, this paper selects a spatial econometric model. The empirical study found that: (1) By using the Spatial Durbin Model, real estate development has an inverted U-shaped impact on environmental pollution. Meanwhile, most cities have not yet reached the turning point; that is, with the continuous development of the real estate industry, environmental pollution will continue to increase. (2) Further regional heterogeneity found that the inverted U-shaped relationship still exists in coastal and inland areas. (3) Finally, this article used the Spatial Mediation Model to explain the nonlinear impact of real estate development on environmental pollution, with two important mediating variables: population density and industrial structure. Through the above analysis, it can be observed that real estate development has a significant impact on environmental pollution. Thus, the country and the government can reduce environmental pollution by improving the investment structure, using environmentally friendly building materials, guiding population flow and promoting industrial upgrading.

Suggested Citation

  • Wenqin Gong & Yu Kong, 2022. "Nonlinear Influence of Chinese Real Estate Development on Environmental Pollution: New Evidence from Spatial Econometric Model," IJERPH, MDPI, vol. 19(1), pages 1-22, January.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:1:p:588-:d:718327
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/1/588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/1/588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jalil, Abdul & Feridun, Mete, 2011. "The impact of growth, energy and financial development on the environment in China: A cointegration analysis," Energy Economics, Elsevier, vol. 33(2), pages 284-291, March.
    2. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    3. Dieter Gerdesmeier & Hans‐Eggert Reimers & Barbara Roffia, 2010. "Asset Price Misalignments and the Role of Money and Credit," International Finance, Wiley Blackwell, vol. 13(3), pages 377-407, December.
    4. Yu Kong & John L. Glascock & Ran Lu-Andrews, 2016. "An Investigation into Real Estate Investment and Economic Growth in China: A Dynamic Panel Data Approach," Sustainability, MDPI, vol. 8(1), pages 1-18, January.
    5. Richard Schmalensee & Robert N. Stavins, 2013. "The SO 2 Allowance Trading System: The Ironic History of a Grand Policy Experiment," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 103-122, Winter.
    6. Huang, Ho-Chuan (River) & Fang, WenShwo & Miller, Stephen M., 2014. "Does financial development volatility affect industrial growth volatility?," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 307-320.
    7. Honghao Ren & Henk Folmer & Arno Vlist, 2014. "What role does the real estate–construction sector play in China’s regional economy?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(3), pages 839-857, May.
    8. Usama Al-Mulali & Ilhan Ozturk & Hooi Lean, 2015. "The influence of economic growth, urbanization, trade openness, financial development, and renewable energy on pollution in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 621-644, October.
    9. Chang-Tai Hsieh & Enrico Moretti, 2019. "Housing Constraints and Spatial Misallocation," American Economic Journal: Macroeconomics, American Economic Association, vol. 11(2), pages 1-39, April.
    10. Ru-Jin Huang & Yanlin Zhang & Carlo Bozzetti & Kin-Fai Ho & Jun-Ji Cao & Yongming Han & Kaspar R. Daellenbach & Jay G. Slowik & Stephen M. Platt & Francesco Canonaco & Peter Zotter & Robert Wolf & Sim, 2014. "High secondary aerosol contribution to particulate pollution during haze events in China," Nature, Nature, vol. 514(7521), pages 218-222, October.
    11. Shengling Zhang & Yao Wang & Zhiwei Liu & Yu Hao, 2021. "The spatial dynamic relationship between haze pollution and economic growth: new evidence from 285 prefecture-level cities in China," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 64(11), pages 1985-2020, July.
    12. Asane-Otoo, Emmanuel, 2015. "Carbon footprint and emission determinants in Africa," Energy, Elsevier, vol. 82(C), pages 426-435.
    13. Sadorsky, Perry, 2010. "The impact of financial development on energy consumption in emerging economies," Energy Policy, Elsevier, vol. 38(5), pages 2528-2535, May.
    14. Friedl, Birgit & Getzner, Michael, 2003. "Determinants of CO2 emissions in a small open economy," Ecological Economics, Elsevier, vol. 45(1), pages 133-148, April.
    15. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    16. Briggs, David & Abellan, Juan J. & Fecht, Daniela, 2008. "Environmental inequity in England: Small area associations between socio-economic status and environmental pollution," Social Science & Medicine, Elsevier, vol. 67(10), pages 1612-1629, November.
    17. Kerwin Kofi Charles & Erik Hurst & Matthew J. Notowidigdo, 2018. "Housing Booms and Busts, Labor Market Opportunities, and College Attendance," American Economic Review, American Economic Association, vol. 108(10), pages 2947-2994, October.
    18. Ang, James B. & McKibbin, Warwick J., 2007. "Financial liberalization, financial sector development and growth: Evidence from Malaysia," Journal of Development Economics, Elsevier, vol. 84(1), pages 215-233, September.
    19. Zhao, Jing & Zhao, Ziru & Zhang, Huan, 2021. "The impact of growth, energy and financial development on environmental pollution in China: New evidence from a spatial econometric analysis," Energy Economics, Elsevier, vol. 93(C).
    20. Sapkota, Pratikshya & Bastola, Umesh, 2017. "Foreign direct investment, income, and environmental pollution in developing countries: Panel data analysis of Latin America," Energy Economics, Elsevier, vol. 64(C), pages 206-212.
    21. Zhang, Yue-Jun, 2011. "The impact of financial development on carbon emissions: An empirical analysis in China," Energy Policy, Elsevier, vol. 39(4), pages 2197-2203, April.
    22. Li, Han & Li, Jiangyi & Lu, Yi & Xie, Huihua, 2020. "Housing wealth and labor supply: Evidence from a regression discontinuity design," Journal of Public Economics, Elsevier, vol. 183(C).
    23. Shi Wang & Hua Wang & Qian Sun, 2020. "The Impact of Foreign Direct Investment on Environmental Pollution in China: Corruption Matters," IJERPH, MDPI, vol. 17(18), pages 1-20, September.
    24. Zhang, Xiaoling, 2015. "Green real estate development in China: State of art and prospect agenda—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 1-13.
    25. Alessia Mangialardo & Ezio Micelli & Federica Saccani, 2018. "Does Sustainability Affect Real Estate Market Values? Empirical Evidence from the Office Buildings Market in Milan (Italy)," Sustainability, MDPI, vol. 11(1), pages 1-14, December.
    26. Hongjie Bao & Ling Shan & Yufei Wang & Yuehua Jiang & Cheonjae Lee & Xufeng Cui, 2021. "How Does Local Real Estate Investment Influence Neighborhood PM 2.5 Concentrations? A Spatial Econometric Analysis," Land, MDPI, vol. 10(5), pages 1-21, May.
    27. Jiangtao Li & Jianyue Ji & Huiwen Guo & Lei Chen, 2018. "Research on the Influence of Real Estate Development on Private Investment: A Case Study of China," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    28. Roberto Pietroforte & Ranko Bon, 1999. "The Italian residential construction sector: an input-output historical analysis," Construction Management and Economics, Taylor & Francis Journals, vol. 17(3), pages 297-303.
    29. Shahbaz, Muhammad & Raghutla, Chandrashekar & Song, Malin & Zameer, Hashim & Jiao, Zhilun, 2020. "Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China," Energy Economics, Elsevier, vol. 86(C).
    30. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    31. Tan, Xianchun & Lai, Haiping & Gu, Baihe & Zeng, Yuan & Li, Hui, 2018. "Carbon emission and abatement potential outlook in China's building sector through 2050," Energy Policy, Elsevier, vol. 118(C), pages 429-439.
    32. Shen, Liyin & Zhang, Zhenyu & Long, Zhijian, 2017. "Significant barriers to green procurement in real estate development," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 160-168.
    33. Wajahat Ali & Azrai Abdullah & Muhammad Azam, 2016. "The Dynamic Linkage between Technological Innovation and carbon dioxide emissions in Malaysia: An Autoregressive Distributed Lagged Bound Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 389-400.
    34. Colin M. Rose & Julia A. Stegemann, 2018. "From Waste Management to Component Management in the Construction Industry," Sustainability, MDPI, vol. 10(1), pages 1-21, January.
    35. Yang, Guo-liang & Fukuyama, Hirofumi & Chen, Kun, 2019. "Investigating the regional sustainable performance of the Chinese real estate industry: A slack-based DEA approach," Omega, Elsevier, vol. 84(C), pages 141-159.
    36. Antonija Ana Wieser & Marco Scherz & Alexander Passer & Helmuth Kreiner, 2021. "Challenges of a Healthy Built Environment: Air Pollution in Construction Industry," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    37. Stephen E. Roulac, 1999. "Real Estate Value Chain Connections: Tangible and Transparent," Journal of Real Estate Research, American Real Estate Society, vol. 17(3), pages 387-404.
    38. Yi, Ming & Wang, Yiqian & Sheng, Mingyue & Sharp, Basil & Zhang, Yao, 2020. "Effects of heterogeneous technological progress on haze pollution: Evidence from China," Ecological Economics, Elsevier, vol. 169(C).
    39. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    40. Guanghu Wan & Chen Wang, 2014. "Unprecedented Urbanisation in Asia and Its Impacts on the Environment," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 47(3), pages 378-385, September.
    41. Zabel, Jeffrey E., 2012. "Migration, housing market, and labor market responses to employment shocks," Journal of Urban Economics, Elsevier, vol. 72(2), pages 267-284.
    42. Ji, Xi & Yao, Yixin & Long, Xianling, 2018. "What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective," Energy Policy, Elsevier, vol. 119(C), pages 458-472.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jianlong & Wang, Weilong & Liu, Yong & Wu, Haitao, 2023. "Can industrial robots reduce carbon emissions? Based on the perspective of energy rebound effect and labor factor flow in China," Technology in Society, Elsevier, vol. 72(C).
    2. Chun Fu & Can Zhou, 2023. "Examining the Impact of Real Estate Development on Carbon Emissions Using Differential Generalized Method of Moments and Dynamic Panel Threshold Model," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    3. Xue Zhou & Jiapeng Wang, 2023. "Research on the Evaluation and Spatial Characteristics of China’s Provincial Socioeconomic Development and Pollution Control Based on the Lotka–Volterra Model," IJERPH, MDPI, vol. 20(5), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Shahbaz & Mehmet Akif Destek & Michael L. Polemis, 2018. "Do Foreign Capital and Financial Development Affect Clean Energy Consumption and Carbon Emissions? Evidence from BRICS and Next-11 Countries," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(4), pages 20-50, October-D.
    2. Taner Akan & Halil İbrahim Gündüz & Tara Vanlı & Ahmet Baran Zeren & Ali Haydar Işık & Tamerlan Mashadihasanli, 2023. "Why are some countries cleaner than others? New evidence from macroeconomic governance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6167-6223, July.
    3. Omri, Anis & Daly, Saida & Rault, Christophe & Chaibi, Anissa, 2015. "Financial development, environmental quality, trade and economic growth: What causes what in MENA countries," Energy Economics, Elsevier, vol. 48(C), pages 242-252.
    4. Xiang, Yitian & Cui, Haotian & Bi, Yunxiao, 2023. "The impact and channel effects of banking competition and government intervention on carbon emissions: Evidence from China," Energy Policy, Elsevier, vol. 175(C).
    5. Ali, Wajahat & Abdullah, Azrai & Azam, Muhammad, 2017. "Re-visiting the environmental Kuznets curve hypothesis for Malaysia: Fresh evidence from ARDL bounds testing approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 990-1000.
    6. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    7. Iftikhar Yasin & Nawaz Ahmad & Muhammad Aslam Chaudhary, 2021. "The impact of financial development, political institutions, and urbanization on environmental degradation: evidence from 59 less-developed economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6698-6721, May.
    8. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    9. Acheampong, Alex O., 2019. "Modelling for insight: Does financial development improve environmental quality?," Energy Economics, Elsevier, vol. 83(C), pages 156-179.
    10. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    11. Md. Golam Kibria & Ismay Jahan & Jannatul Mawa, 2021. "Asymmetric effect of financial development and energy consumption on environmental degradation in South Asia? New evidence from non-linear ARDL analysis," SN Business & Economics, Springer, vol. 1(4), pages 1-18, April.
    12. Haider Mahmood & Maham Furqan & Muhammad Shahid Hassan & Soumen Rej, 2023. "The Environmental Kuznets Curve (EKC) Hypothesis in China: A Review," Sustainability, MDPI, vol. 15(7), pages 1-32, April.
    13. Mumin Atalay Cetin & Ibrahim Bakirtas, 2020. "The long-run environmental impacts of economic growth, financial development, and energy consumption: Evidence from emerging markets," Energy & Environment, , vol. 31(4), pages 634-655, June.
    14. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    15. Shahbaz, Muhammad & Nasir, Muhammad Ali & Roubaud, David, 2018. "Environmental degradation in France: The effects of FDI, financial development, and energy innovations," Energy Economics, Elsevier, vol. 74(C), pages 843-857.
    16. Khan, Muhammad Tariq Iqbal & Yaseen, Muhammad Rizwan & Ali, Qamar, 2019. "Nexus between financial development, tourism, renewable energy, and greenhouse gas emission in high-income countries: A continent-wise analysis," Energy Economics, Elsevier, vol. 83(C), pages 293-310.
    17. Lina Meng & Xiao Xiao & Yinggang Zhou, 2023. "Housing Boom and Household Migration Decision: New Evidence from China," The Journal of Real Estate Finance and Economics, Springer, vol. 67(3), pages 453-479, October.
    18. Jamal Sekali & Mohamed Bouzahzah, 2019. "Financial Development and Environmental Quality: Empirical Evidence for Morocco," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 67-74.
    19. Shahbaz, Muhammad & Mutascu, Mihai & Azim, Parvez, 2013. "Environmental Kuznets curve in Romania and the role of energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 165-173.
    20. Shahbaz, Muhammad & Shahzad, Syed Jawad Hussain & Ahmad, Nawaz & Alam, Shaista, 2016. "Financial development and environmental quality: The way forward," Energy Policy, Elsevier, vol. 98(C), pages 353-364.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:1:p:588-:d:718327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.