IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i2p26-d1675016.html

Identifying and Forecasting Recurrently Emerging Stock Trend Structures via Rising Visibility Graphs

Author

Listed:
  • Zhen Zeng

    (Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8563, Japan)

  • Yu Chen

    (Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8563, Japan)

Abstract

This study introduces a novel forecasting framework that identifies and predicts recurrently emerging structural patterns in stock trends using rising visibility graphs (RVGs) and the Weisfeiler–Lehman (WL) subtree kernel. The proposed method, RVGWL, addresses a key limitation of traditional visibility graphs, namely the structural indistinguishability between rising and falling trends, by selectively constructing edges only along upward price movements. This approach produces graph representations that capture direction-sensitive market dynamics and facilitate the extraction of meaningful topological features from price data. By applying the WL kernel, RVGWL quantifies structural similarities between graph-transformed time series, enabling the identification of structurally similar preceding patterns and the probabilistic forecasting of their subsequent trajectories based on nine canonical trend templates. Experiments on time series data from four major stock indices and their constituent stocks during the year 2023—characterized by diverse market regimes across the U.S., Japan, the U.K., and China—demonstrate that RVGWL consistently outperforms classical rule-based strategies. These results support the predictive value of recurring topological structures in financial time series and higight the potential of structure-aware forecasting methods in quantitative analysis.

Suggested Citation

  • Zhen Zeng & Yu Chen, 2025. "Identifying and Forecasting Recurrently Emerging Stock Trend Structures via Rising Visibility Graphs," Forecasting, MDPI, vol. 7(2), pages 1-20, June.
  • Handle: RePEc:gam:jforec:v:7:y:2025:i:2:p:26-:d:1675016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/7/2/26/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/7/2/26/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    2. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    3. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    4. Taewook Kim & Ha Young Kim, 2019. "Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    2. Kadilli, Anjeza, 2015. "Predictability of stock returns of financial companies and the role of investor sentiment: A multi-country analysis," Journal of Financial Stability, Elsevier, vol. 21(C), pages 26-45.
    3. Carol Alexander & Anca Dimitriu, 2003. "Equity Indexing: Conitegration and Stock Price Dispersion: A Regime Switiching Approach to market Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2003-02, Henley Business School, University of Reading.
    4. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    5. Florian Huber & Tamás Krisztin & Philipp Piribauer, 2017. "Forecasting Global Equity Indices Using Large Bayesian Vars," Bulletin of Economic Research, Wiley Blackwell, vol. 69(3), pages 288-308, July.
    6. Abhinava Tripathi, 2021. "The Arrival of Information and Price Adjustment Across Extreme Quantiles: Global Evidence," IIM Kozhikode Society & Management Review, , vol. 10(1), pages 7-19, January.
    7. Gartner, Manfred & Wellershoff, Klaus W., 1995. "Is there an election cycle in American stock returns?," International Review of Economics & Finance, Elsevier, vol. 4(4), pages 387-410.
    8. Taufiq Choudhry & Ranadeva Jayasekera, 2015. "Level of efficiency in the UK equity market: empirical study of the effects of the global financial crisis," Review of Quantitative Finance and Accounting, Springer, vol. 44(2), pages 213-242, February.
    9. He, Xue-Zhong & Zheng, Min, 2010. "Dynamics of moving average rules in a continuous-time financial market model," Journal of Economic Behavior & Organization, Elsevier, vol. 76(3), pages 615-634, December.
    10. Linnenluecke, Martina K. & Chen, Xiaoyan & Ling, Xin & Smith, Tom & Zhu, Yushu, 2017. "Research in finance: A review of influential publications and a research agenda," Pacific-Basin Finance Journal, Elsevier, vol. 43(C), pages 188-199.
    11. Kuttu, Saint, 2018. "Modelling long memory in volatility in sub-Saharan African equity markets," Research in International Business and Finance, Elsevier, vol. 44(C), pages 176-185.
    12. Jan Schulz & Mishael Milaković, 2023. "How Wealthy are the Rich?," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(1), pages 100-123, March.
    13. Li, GuangJie, 2009. "The Horizon Effect of Stock Return Predictability and Model Uncertainty on Portfolio Choice: UK Evidence," Cardiff Economics Working Papers E2009/4, Cardiff University, Cardiff Business School, Economics Section, revised Aug 2009.
    14. Wang, Yunqi & Zhou, Ti, 2023. "Out-of-sample equity premium prediction: The role of option-implied constraints," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 199-226.
    15. Xuan Vinh Vo & Kevin Daly, 2008. "Volatility amongst firms in the Dow Jones Eurostoxx50 Index," Applied Financial Economics, Taylor & Francis Journals, vol. 18(7), pages 569-582.
    16. repec:ipg:wpaper:2013-020 is not listed on IDEAS
    17. David G. McMillan, 2003. "Non‐linear Predictability of UK Stock Market Returns," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(5), pages 557-573, December.
    18. repec:grz:wpaper:2012-02 is not listed on IDEAS
    19. Ryan Bartens & Shakill Hassan, 2010. "Value, size and momentum portfolios in real time: the cross section of South African stocks," Australian Journal of Management, Australian School of Business, vol. 35(2), pages 181-202, August.
    20. Herold, Michael & Kanz, Andreas & Muck, Matthias, 2021. "Do opinion polls move stock prices? Evidence from the US presidential election in 2016," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 665-690.
    21. dos Santos Maciel, Leandro, 2023. "Brazilian stock-market efficiency before and after COVID-19: The roles of fractality and predictability," Global Finance Journal, Elsevier, vol. 58(C).
    22. Fernando Rubio, 2005. "Estrategias Cuantitativas De Valor Y Retornos Por Accion De Largo," Finance 0503029, University Library of Munich, Germany.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:2:p:26-:d:1675016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.