IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p602-d75015.html
   My bibliography  Save this article

City Carbon Footprint Networks

Author

Listed:
  • Guangwu Chen

    (Sustainability Assessment Program (SAP), Water Research Centre, School of Civil and Environmental Engineering, UNSW Australia, Sydney, NSW 2052, Australia)

  • Thomas Wiedmann

    (Sustainability Assessment Program (SAP), Water Research Centre, School of Civil and Environmental Engineering, UNSW Australia, Sydney, NSW 2052, Australia
    Integrated Sustainability Analysis (ISA), School of Physics A28, The University of Sydney, Sydney, NSW 2006, Australia)

  • Michalis Hadjikakou

    (Sustainability Assessment Program (SAP), Water Research Centre, School of Civil and Environmental Engineering, UNSW Australia, Sydney, NSW 2052, Australia)

  • Hazel Rowley

    (Sustainability Assessment Program (SAP), Water Research Centre, School of Civil and Environmental Engineering, UNSW Australia, Sydney, NSW 2052, Australia)

Abstract

Progressive cities worldwide have demonstrated political leadership by initiating meaningful strategies and actions to tackle climate change. However, the lack of knowledge concerning embodied greenhouse gas (GHG) emissions of cities has hampered effective mitigation. We analyse trans-boundary GHG emission transfers between five Australian cities and their trading partners, with embodied emission flows broken down into major economic sectors. We examine intercity carbon footprint (CF) networks and disclose a hierarchy of responsibility for emissions between cities and regions. Allocations of emissions to households, businesses and government and the carbon efficiency of expenditure have been analysed to inform mitigation policies. Our findings indicate that final demand in the five largest cities in Australia accounts for more than half of the nation’s CF. City households are responsible for about two thirds of the cities’ CFs; the rest can be attributed to government and business consumption and investment. The city network flows highlight that over half of emissions embodied in imports (EEI) to the five cities occur overseas. However, a hierarchy of GHG emissions reveals that overseas regions also outsource emissions to Australian cities such as Perth. We finally discuss the implications of our findings on carbon neutrality, low-carbon city concepts and strategies and allocation of subnational GHG responsibility.

Suggested Citation

  • Guangwu Chen & Thomas Wiedmann & Michalis Hadjikakou & Hazel Rowley, 2016. "City Carbon Footprint Networks," Energies, MDPI, vol. 9(8), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:602-:d:75015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hermannsson, Kristinn & McIntyre, Stuart G., 2014. "Local consumption and territorial based accounting for CO2 emissions," Ecological Economics, Elsevier, vol. 104(C), pages 1-11.
    2. Manfred Lenzen & Blanca Gallego & Richard Wood, 2009. "Matrix Balancing Under Conflicting Information," Economic Systems Research, Taylor & Francis Journals, vol. 21(1), pages 23-44.
    3. Chavez, Abel & Ramaswami, Anu, 2013. "Articulating a trans-boundary infrastructure supply chain greenhouse gas emission footprint for cities: Mathematical relationships and policy relevance," Energy Policy, Elsevier, vol. 54(C), pages 376-384.
    4. Reynolds, Christian John & Piantadosi, Julia & Buckley, Jonathan David & Weinstein, Philip & Boland, John, 2015. "Evaluation of the environmental impact of weekly food consumption in different socio-economic households in Australia using environmentally extended input–output analysis," Ecological Economics, Elsevier, vol. 111(C), pages 58-64.
    5. Astrid Kander & Magnus Jiborn & Daniel D. Moran & Thomas O. Wiedmann, 2015. "National greenhouse-gas accounting for effective climate policy on international trade," Nature Climate Change, Nature, vol. 5(5), pages 431-435, May.
    6. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    7. Zhongxiang Zhang, 2015. "Carbon emissions trading in China: the evolution from pilots to a nationwide scheme," Climate Policy, Taylor & Francis Journals, vol. 15(sup1), pages 104-126, December.
    8. Philip Mccann & John H. LL. Dewhurst, 1998. "Regional Size, Industrial Location and Input-Output Expenditure Coefficients," Regional Studies, Taylor & Francis Journals, vol. 32(5), pages 435-444.
    9. A. T. Flegg & C. D. Webber, 2000. "Regional Size, Regional Specialization and the FLQ Formula," Regional Studies, Taylor & Francis Journals, vol. 34(6), pages 563-569.
    10. Angel Hsu & Yaping Cheng & Amy Weinfurter & Kaiyang Xu & Cameron Yick, 2016. "Track climate pledges of cities and companies," Nature, Nature, vol. 532(7599), pages 303-306, April.
    11. Lenzen, Manfred & Murray, Joy & Sack, Fabian & Wiedmann, Thomas, 2007. "Shared producer and consumer responsibility -- Theory and practice," Ecological Economics, Elsevier, vol. 61(1), pages 27-42, February.
    12. Jukka Heinonen & Antti-Juhani Säynäjoki & Matti Kuronen & Seppo Junnila, 2012. "Are the Greenhouse Gas Implications of New Residential Developments Understood Wrongly?," Energies, MDPI, vol. 5(8), pages 1-20, August.
    13. Glen P. Peters & Gregg Marland & Corinne Le Quéré & Thomas Boden & Josep G. Canadell & Michael R. Raupach, 2012. "Rapid growth in CO2 emissions after the 2008–2009 global financial crisis," Nature Climate Change, Nature, vol. 2(1), pages 2-4, January.
    14. Carolyn Kousky & Stephen H. Schneider, 2003. "Global climate policy: will cities lead the way?," Climate Policy, Taylor & Francis Journals, vol. 3(4), pages 359-372, December.
    15. Manfred Lenzen & Daniel Moran & Keiichiro Kanemoto & Arne Geschke, 2013. "Building Eora: A Global Multi-Region Input-Output Database At High Country And Sector Resolution," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 20-49, March.
    16. Sanna Ala-Mantila & Jukka Heinonen & Seppo Junnila, 2013. "Greenhouse Gas Implications of Urban Sprawl in the Helsinki Metropolitan Area," Sustainability, MDPI, vol. 5(10), pages 1-18, October.
    17. Moloney, Susie & Horne, Ralph E. & Fien, John, 2010. "Transitioning to low carbon communities--from behaviour change to systemic change: Lessons from Australia," Energy Policy, Elsevier, vol. 38(12), pages 7614-7623, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Wiedmann, 2017. "An input–output virtual laboratory in practice – survey of uptake, usage and applications of the first operational IELab," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 296-312, April.
    2. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).
    3. Chen, Guangwu & Wiedmann, Thomas & Wang, Yafei & Hadjikakou, Michalis, 2016. "Transnational city carbon footprint networks – Exploring carbon links between Australian and Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1082-1092.
    4. Wen, Yifan & Zhang, Shaojun & Zhang, Jingran & Bao, Shuanghui & Wu, Xiaomeng & Yang, Daoyuan & Wu, Ye, 2020. "Mapping dynamic road emissions for a megacity by using open-access traffic congestion index data," Applied Energy, Elsevier, vol. 260(C).
    5. Federica Leone & Ala Hasan & Francesco Reda & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2023. "Supporting Cities towards Carbon Neutral Transition through Territorial Acupuncture," Sustainability, MDPI, vol. 15(5), pages 1-31, February.
    6. Zhigang Li & Jialong Zhong & Zishu Sun & Wunian Yang, 2017. "Spatial Pattern of Carbon Sequestration and Urban Sustainability: Analysis of Land-Use and Carbon Emission in Guang’an, China," Sustainability, MDPI, vol. 9(11), pages 1-24, October.
    7. Jingbo Fan & Aobo Ran & Xiaomeng Li, 2019. "A Study on the Factors Affecting China’s Direct Household Carbon Emission and Comparison of Regional Differences," Sustainability, MDPI, vol. 11(18), pages 1-14, September.
    8. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    9. Fang, Delin & Chen, Bin, 2019. "Information-based ecological network analysis for carbon emissions," Applied Energy, Elsevier, vol. 238(C), pages 45-53.
    10. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    11. Guo, Shan & Li, Yilin & He, Ping & Chen, Haosong & Meng, Jing, 2021. "Embodied energy use of China's megacities: A comparative study of Beijing and Shanghai," Energy Policy, Elsevier, vol. 155(C).
    12. Pulselli, Riccardo Maria & Broersma, Siebe & Martin, Craig Lee & Keeffe, Greg & Bastianoni, Simone & van den Dobbelsteen, Andy, 2021. "Future city visions. The energy transition towards carbon-neutrality: lessons learned from the case of Roeselare, Belgium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Chuyu Xia & Yan Li & Yanmei Ye & Zhou Shi & Jingming Liu, 2017. "Decomposed Driving Factors of Carbon Emissions and Scenario Analyses of Low-Carbon Transformation in 2020 and 2030 for Zhejiang Province," Energies, MDPI, vol. 10(11), pages 1-16, October.
    14. Adeoluwa Akande & Pedro Cabral & Sven Casteleyn, 2019. "Assessing the Gap between Technology and the Environmental Sustainability of European Cities," Information Systems Frontiers, Springer, vol. 21(3), pages 581-604, June.
    15. Ji, Xi & Liu, Yifang & Meng, Jing & Wu, Xudong, 2020. "Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers," Applied Energy, Elsevier, vol. 276(C).
    16. Xuecheng Wang & Xu Tang & Zhenhua Feng & Yi Zhang, 2019. "Characterizing the Embodied Carbon Emissions Flows and Ecological Relationships among Four Chinese Megacities and Other Provinces," Sustainability, MDPI, vol. 11(9), pages 1-19, May.
    17. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    18. Jacob Fry & Arne Geschke & Sarah Langdon & Manfred Lenzen & Mengyu Li & Arunima Malik & Ya‐Yen Sun & Thomas Wiedmann, 2022. "Creating multi‐scale nested MRIO tables for linking localized impacts to global consumption drivers," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 281-293, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Guangwu & Wiedmann, Thomas & Wang, Yafei & Hadjikakou, Michalis, 2016. "Transnational city carbon footprint networks – Exploring carbon links between Australian and Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1082-1092.
    2. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    3. Hongli Zhang & Lei Shen & Shuai Zhong & Ayman Elshkaki, 2020. "Economic Structure Transformation and Low-Carbon Development in Energy-Rich Cities: The Case of the Contiguous Area of Shanxi and Shaanxi Provinces, and Inner Mongolia Autonomous Region of China," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    4. Zheng LU & Xiang DENG, 2017. "Regional Specialization: New Methods Of Measurement And The Trends In China 1987-2007," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 17(2), pages 119-134.
    5. Thomas Wiedmann, 2017. "An input–output virtual laboratory in practice – survey of uptake, usage and applications of the first operational IELab," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 296-312, April.
    6. Cohen, Gail & Jalles, Joao Tovar & Loungani, Prakash & Marto, Ricardo, 2018. "The long-run decoupling of emissions and output: Evidence from the largest emitters," Energy Policy, Elsevier, vol. 118(C), pages 58-68.
    7. Gunnar Lindberg, 2011. "On the appropriate use of (input-output) coefficients to generate non-survey regional input-output tables: Implications for the determination of output multipliers," ERSA conference papers ersa10p800, European Regional Science Association.
    8. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    9. Xu, Xueliu & Wang, Qian & Ran, Chenyang & Mu, Mingjie, 2021. "Is burden responsibility more effective? A value-added method for tracing worldwide carbon emissions," Ecological Economics, Elsevier, vol. 181(C).
    10. Lu, Zheng & Flegg, A.Tony & Deng, Xiang, 2011. "Regional specialization: a measure method and the trends in China," MPRA Paper 33867, University Library of Munich, Germany.
    11. Franco Solís, Alberto & F.T. Avelino, André & Carrascal-Incera, André, 2020. "The evolution of household-induced value chains and their environmental implications," Ecological Economics, Elsevier, vol. 174(C).
    12. Hana Nielsen & Astrid Kander, 2020. "Trade in the Carbon-Constrained Future: Exploiting the Comparative Carbon Advantage of Swedish Trade," Energies, MDPI, vol. 13(14), pages 1-25, July.
    13. Yang Yang & Suocheng Dong & Fujia Li & Hao Cheng & Zehong Li & Yu Li & Shantong Li, 2021. "An analysis on the adoption of an interregional carbon emission reduction allocation approach in the context of China’s interprovincial carbon emission transfer," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4385-4411, March.
    14. Hongguang Liu & Xiaomei Fan, 2017. "Value-Added-Based Accounting of CO 2 Emissions: A Multi-Regional Input-Output Approach," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    15. Christian John Reynolds & Julia Piantadosi & John Boland, 2015. "Rescuing Food from the Organics Waste Stream to Feed the Food Insecure: An Economic and Environmental Assessment of Australian Food Rescue Operations Using Environmentally Extended Waste Input-Output ," Sustainability, MDPI, vol. 7(4), pages 1-20, April.
    16. Sanjith Gopalakrishnan & Daniel Granot & Frieda Granot & Greys Sošić & Hailong Cui, 2021. "Incentives and Emission Responsibility Allocation in Supply Chains," Management Science, INFORMS, vol. 67(7), pages 4172-4190, July.
    17. Peng, Shuijun & Zhang, Wencheng & Sun, Chuanwang, 2016. "‘Environmental load displacement’ from the North to the South: A consumption-based perspective with a focus on China," Ecological Economics, Elsevier, vol. 128(C), pages 147-158.
    18. Sylvain Weber & Reyer Gerlagh & Nicole A. Mathys & Daniel Moran, 2017. "CO2 embedded in trade: trends and fossil fuel drivers," Development Working Papers 413, Centro Studi Luca d'Agliano, University of Milano.
    19. Markaki, M. & Belegri-Roboli, A. & Sarafidis, Υ. & Mirasgedis, S., 2017. "The carbon footprint of Greek households (1995–2012)," Energy Policy, Elsevier, vol. 100(C), pages 206-215.
    20. Sanjith Gopalakrishnan & Daniel Granot & Frieda Granot, 2021. "Consistent Allocation of Emission Responsibility in Fossil Fuel Supply Chains," Management Science, INFORMS, vol. 67(12), pages 7637-7668, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:602-:d:75015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.