IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3052-d1675108.html
   My bibliography  Save this article

Impact of Models of Thermodynamic Properties and Liquid–Gas Mass Transfer on CFD Simulation of Liquid Hydrogen Release

Author

Listed:
  • Chenyu Lu

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Jianfei Yang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Jian Yuan

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Luoyi Feng

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Wenbo Li

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Cunman Zhang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Liming Cai

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Jing Cao

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

Abstract

The safety performance of liquid hydrogen storage has a significant influence on its large-scale commercial application. Due to the complexity and costs of experimental investigation, computational fluid dynamics (CFD) simulations have been extensively applied to investigate the dynamic behaviors of liquid hydrogen release. The involved physical and chemical models, such as models of species thermodynamic properties and liquid–gas mass transfer, play a major role for the entire CFD model performance. However, comprehensive investigations into their impacts remain insufficient. In this study, CFD models of liquid hydrogen release were developed by using two widely used commercial simulation tools, Fluent and FLACS, and validated against experimental data available in the literature. Comparisons of the model results reveal strong discrepancies in the prediction accuracy of temperature and hydrogen volume fraction between the two models. The impact of the models of thermodynamic properties and liquid–gas mass transfer on the prediction results was subsequently explored by incorporating the FLACS sub-models to Fluent and evaluating the resulting prediction differences in temperatures and hydrogen volume fractions. The results show that the models of thermodynamic properties and liquid–gas mass transfer used in FLACS underestimate the vertical rise height and the highest hydrogen volume fraction of the cloud. Sensitivity analyses on the parameters in these sub-models indicate that the specific heats of hydrogen and nitrogen, in conjunction with the mass flow rate and outflow density of the mass transfer model, have a significant influence on model prediction of temperature.

Suggested Citation

  • Chenyu Lu & Jianfei Yang & Jian Yuan & Luoyi Feng & Wenbo Li & Cunman Zhang & Liming Cai & Jing Cao, 2025. "Impact of Models of Thermodynamic Properties and Liquid–Gas Mass Transfer on CFD Simulation of Liquid Hydrogen Release," Energies, MDPI, vol. 18(12), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3052-:d:1675108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3052/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3052/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shen, Yahao & Wang, Deng & Lv, Hong & Zhang, Cunman, 2024. "Dispersion characteristics of large-scale liquid hydrogen spills in a real-world liquid hydrogen refueling station with various releasing and environmental conditions," Renewable Energy, Elsevier, vol. 236(C).
    2. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    3. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Rui & Cao, Xuewen & Zhang, Xingwang & Yang, Jian & Bian, Jiang, 2024. "Co-benefits of the liquid hydrogen economy and LNG economy: Advances in LNG integrating LH2 production processes," Energy, Elsevier, vol. 301(C).
    2. Zubi, Ghassan & Kuhn, Maximilian & Makridis, Sofoklis & Coutinho, Savio & Dorasamy, Stanley, 2025. "Aviation sector decarbonization within the hydrogen economy – A UAE case study," Energy Policy, Elsevier, vol. 198(C).
    3. Qiao, Yan & Jiang, Wenquan & Li, Yang & Dong, Xiaoxiao & Yang, Fan, 2024. "Design and analysis of steam methane reforming hydrogen liquefaction and waste heat recovery system based on liquefied natural gas cold energy," Energy, Elsevier, vol. 302(C).
    4. Zhang, Guojie & Yang, Yifan & Zhang, Xinzhe & Zhang, Zebin & Chen, Jiaheng & Jin, Zunlong & Dykas, Sławomir, 2024. "Nanoparticles-induced heterogeneous condensation and geometry optimizations to enhance liquefaction efficiency and mitigate exergy loss in a novel hydrogen liquefaction two-phase expander," Energy, Elsevier, vol. 313(C).
    5. Fengyuan Yan & Jinliang Geng & Guangxin Rong & Heng Sun & Lei Zhang & Jinxu Li, 2023. "Optimization and Analysis of an Integrated Liquefaction Process for Hydrogen and Natural Gas Utilizing Mixed Refrigerant Pre-Cooling," Energies, MDPI, vol. 16(10), pages 1-18, May.
    6. Zhang, Tongtong & Uratani, Joao & Huang, Yixuan & Xu, Lejin & Griffiths, Steve & Ding, Yulong, 2023. "Hydrogen liquefaction and storage: Recent progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    7. Bian, Jiang & Zhang, Xingwang & Zhang, Rui & Cai, Weihua & Hua, Yihuai & Cao, Xuewen, 2024. "Conceptual design and analysis of a new hydrogen liquefaction process based on heat pump systems," Applied Energy, Elsevier, vol. 374(C).
    8. Morales-Ospino, R. & Celzard, A. & Fierro, V., 2023. "Strategies to recover and minimize boil-off losses during liquid hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    9. Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
    10. Steven Jackson & Eivind Brodal, 2021. "Optimization of a Mixed Refrigerant Based H 2 Liquefaction Pre-Cooling Process and Estimate of Liquefaction Performance with Varying Ambient Temperature," Energies, MDPI, vol. 14(19), pages 1-18, September.
    11. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
    12. Jorgen Depken & Alexander Dyck & Lukas Roß & Sören Ehlers, 2022. "Safety Considerations of Hydrogen Application in Shipping in Comparison to LNG," Energies, MDPI, vol. 15(9), pages 1-20, April.
    13. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    14. José Manuel Andújar & Francisca Segura & Jesús Rey & Francisco José Vivas, 2022. "Batteries and Hydrogen Storage: Technical Analysis and Commercial Revision to Select the Best Option," Energies, MDPI, vol. 15(17), pages 1-32, August.
    15. Fang, Song & Zhu, Shaolong & Wei, Xinyu & Teng, Junjie & Cao, Shaoyu & Wang, Kai & Qiu, Limin, 2024. "Dimensionless performance mapping of cryogenic plate-fin heat exchangers with ortho-para hydrogen continuous conversion for hydrogen liquefaction," Energy, Elsevier, vol. 313(C).
    16. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    17. Gi-Dong Nam & Hae-Jin Sung & Dong-Woo Ha & Hyun-Woo No & Tea-Hyung Koo & Rock-Kil Ko & Minwon Park, 2023. "Design and Analysis of Cryogenic Cooling System for Electric Propulsion System Using Liquid Hydrogen," Energies, MDPI, vol. 16(1), pages 1-21, January.
    18. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    19. Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.
    20. Ghorbani, Bahram & Zendehboudi, Sohrab & Moradi, Mostafa, 2021. "Development of an integrated structure of hydrogen and oxygen liquefaction cycle using wind turbines, Kalina power generation cycle, and electrolyzer," Energy, Elsevier, vol. 221(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3052-:d:1675108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.