IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p435-d1320010.html
   My bibliography  Save this article

Prediction of the Spatial and Temporal Adoption of an Energy Management System in Automated Dairy Cattle Barns in Bavaria—“CowEnergySystem”

Author

Listed:
  • Christoph Bader

    (Agricultural Systems Engineering, TUM School of Life Sciences, Technical University of Munich, Dürnast 10, 85354 Freising, Germany)

  • Jörn Stumpenhausen

    (Faculty of Sustainable Agricultural and Energy Systems, University of Applied Sciences Weihenstephan-Triesdorf, Am Staudengarten 1, 85354 Freising, Germany)

  • Heinz Bernhardt

    (Agricultural Systems Engineering, TUM School of Life Sciences, Technical University of Munich, Dürnast 10, 85354 Freising, Germany)

Abstract

In view of rising global demand, energy is becoming a significant cost factor in industry and society. In addition to the global players China, India, and the USA, Africa will also become a driver of the world’s primary energy demand in the future due to the rapidly growing developing countries. In addition to the armed conflicts in Ukraine and the Middle East, global energy markets are tense and volatile due to inflation and higher borrowing costs. Because of society’s desire to phase out the use of fossil fuels, the use of renewable energies is increasingly taking center stage worldwide and especially in Germany. Rural areas and agriculture, especially energy-intensive livestock farms, are particularly affected by this development and are therefore faced with additional economic challenges. Additional energy can be generated by using photovoltaic systems on the roofs of farm buildings or by utilizing the liquid manure from livestock farming in biogas plants. For these farms, such alternative sources of energy could open previously untapped potential and additional synergies for using their own inexpensive energy on the farm or supplying surplus electricity directly to the public grid as a market participant. Agriculture could thus serve as an actor in a decentralized energy supply and thus build up regional energy networks. However, intelligent electricity storage concepts and a corresponding energy management system (EMS) are essential to be able to utilize the potential for renewable energy generation at all, to coordinate both internal production processes and the varying energy demand and supply on the electricity grid. As agricultural production processes differ greatly from farm to farm and region to region, the introduction of an energy management system is strongly dependent on user acceptance. The purpose of this study is to use the web-based software tool ADOPT (CSIRO 2018) to predict the level of acceptance and the duration of the market launch of an EMS based on the region of Bavaria. Individual important influencing factors for the subsequent regional marketing concept are also identified.

Suggested Citation

  • Christoph Bader & Jörn Stumpenhausen & Heinz Bernhardt, 2024. "Prediction of the Spatial and Temporal Adoption of an Energy Management System in Automated Dairy Cattle Barns in Bavaria—“CowEnergySystem”," Energies, MDPI, vol. 17(2), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:435-:d:1320010
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/435/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/435/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bartholdsen, Hans-Karl & Eidens, Anna & Löffler, Konstantin & Seehaus, Frederik & Wejda, Felix & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Hirschhausen, Christian von, 2019. "Pathways for Germany's Low-Carbon Energy Transformation Towards 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15), pages 1-33.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mantas Svazas & Yuriy Bilan & Valentinas Navickas, 2024. "Research Directions of the Energy Transformation Impact on the Economy in the Aspect of Asset Analysis," Sustainability, MDPI, vol. 16(6), pages 1-21, March.
    2. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    3. Wang, Ni & Verzijlbergh, Remco A. & Heijnen, Petra W. & Herder, Paulien M., 2023. "Incorporating indirect costs into energy system optimization models: Application to the Dutch national program Regional Energy Strategies," Energy, Elsevier, vol. 276(C).
    4. Abuzayed, Anas & Hartmann, Niklas, 2022. "MyPyPSA-Ger: Introducing CO2 taxes on a multi-regional myopic roadmap of the German electricity system towards achieving the 1.5 °C target by 2050," Applied Energy, Elsevier, vol. 310(C).
    5. Löffler, Konstantin & Burandt, Thorsten & Hainsch, Karlo & Oei, Pao-Yu & Seehaus, Frederik & Wejda, Felix, 2022. "Chances and barriers for Germany's low carbon transition - Quantifying uncertainties in key influential factors," Energy, Elsevier, vol. 239(PA).
    6. Burandt, Thorsten, 2021. "Analyzing the necessity of hydrogen imports for net-zero emission scenarios in Japan," Applied Energy, Elsevier, vol. 298(C).
    7. Morgenthaler, Simon & Kuckshinrichs, Wilhelm & Witthaut, Dirk, 2020. "Optimal system layout and locations for fully renewable high temperature co-electrolysis," Applied Energy, Elsevier, vol. 260(C).
    8. Kendziorski, Mario & Göke, Leonard & von Hirschhausen, Christian & Kemfert, Claudia & Zozmann, Elmar, 2022. "Centralized and decentral approaches to succeed the 100% energiewende in Germany in the European context – A model-based analysis of generation, network, and storage investments," Energy Policy, Elsevier, vol. 167(C).
    9. Raúl Gutiérrez-Meave & Juan Rosellón & Luis Sarmiento, 2021. "The Effect of Changing Marginal-Cost to Physical-Order Dispatch in the Power Sector," Discussion Papers of DIW Berlin 1955, DIW Berlin, German Institute for Economic Research.
    10. Yu Hu & Yuanying Chi & Wenbing Zhou & Zhengzao Wang & Yongke Yuan & Ruoyang Li, 2022. "Research on Energy Structure Optimization and Carbon Emission Reduction Path in Beijing under the Dual Carbon Target," Energies, MDPI, vol. 15(16), pages 1-17, August.
    11. Michael Metzger & Mathias Duckheim & Marco Franken & Hans Joerg Heger & Matthias Huber & Markus Knittel & Till Kolster & Martin Kueppers & Carola Meier & Dieter Most & Simon Paulus & Lothar Wyrwoll & , 2021. "Pathways toward a Decarbonized Future—Impact on Security of Supply and System Stability in a Sustainable German Energy System," Energies, MDPI, vol. 14(3), pages 1-28, January.
    12. Victor I. Espinosa & José Antonio Peña-Ramos & Fátima Recuero-López, 2021. "The Political Economy of Rent-Seeking: Evidence from Spain’s Support Policies for Renewable Energy," Energies, MDPI, vol. 14(14), pages 1-16, July.
    13. Sylwia Mrozowska & Jan A. Wendt & Krzysztof Tomaszewski, 2021. "The Challenges of Poland’s Energy Transition," Energies, MDPI, vol. 14(23), pages 1-22, December.
    14. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    15. Thimet, P.J. & Mavromatidis, G., 2022. "Review of model-based electricity system transition scenarios: An analysis for Switzerland, Germany, France, and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Hofbauer, Leonhard & McDowall, Will & Pye, Steve, 2022. "Challenges and opportunities for energy system modelling to foster multi-level governance of energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Hainsch, Karlo & Löffler, Konstantin & Burandt, Thorsten & Auer, Hans & Crespo del Granado, Pedro & Pisciella, Paolo & Zwickl-Bernhard, Sebastian, 2022. "Energy transition scenarios: What policies, societal attitudes, and technology developments will realize the EU Green Deal?," Energy, Elsevier, vol. 239(PC).
    18. Xiaoyang Hou & Shuai Zhong & Jian’an Zhao, 2022. "A Critical Review on Decarbonizing Heating in China: Pathway Exploration for Technology with Multi-Sector Applications," Energies, MDPI, vol. 15(3), pages 1-23, February.
    19. Jafari, Yaghoob & Engemann, Helena & Heckelei, Thomas & Hainsch, Karlo, 2023. "National and Regional Economic Impacts of changes in Germany's electricity mix: A dynamic analysis through 2050," Utilities Policy, Elsevier, vol. 82(C).
    20. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:435-:d:1320010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.