IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7170-d1264063.html
   My bibliography  Save this article

Quality of Service and Associated Communication Infrastructure for Electric Vehicles

Author

Listed:
  • Rajeshkumar Ramraj

    (School of Engineering and Technology, Central Queensland University, Bryan Jordan Drive, Gladstone, QLD 4680, Australia)

  • Ehsan Pashajavid

    (School of Electrical Engineering Computing and Mathematical Sciences, Curtin University, Bentley, WA 6102, Australia)

  • Sanath Alahakoon

    (School of Engineering and Technology, Central Queensland University, Bryan Jordan Drive, Gladstone, QLD 4680, Australia)

  • Shantha Jayasinghe

    (Maritime and Logistics Management, University of Tasmania, Hobart, TAS 7005, Australia)

Abstract

Transportation electrification is pivotal for achieving energy security and emission reduction goals. Electric vehicles (EVs) are at the forefront of this transition, driving the development of new EV technologies and infrastructure. As this trend gains momentum, it becomes essential to enhance the quality of service (QoS) of EVs to encourage their widespread adoption. This paper has been structured with two primary aims to effectively address the above timely technological needs. Firstly, it comprehensively reviews the various QoS factors that influence EVs’ performance and the user experience. Delving into these factors provides valuable insights into how the QoS can be improved, thereby fostering the increased use of EVs on our roads. In addition to the QoS, this paper also explores recent advancements in communication technologies vital for facilitating in-formation exchanges between EVs and charging stations. Efficient communication systems are crucial for optimizing EV operations and enhancing user experiences. This paper presents expert-level technical details in an easily understandable manner, making it a valuable resource for researchers dedicated to improving the QoS of EV communication systems, who are tirelessly working towards a cleaner, more efficient future in transportation. It consolidates the current knowledge in the field and presents the latest discoveries and developments, offering practical insights for enhancing the QoS in electric transportation. A QoS parameter reference map, a detailed classification of QoS parameters, and a classification of EV communication technology references are some of the key contributions of this review paper. In doing so, this paper contributes to the broader objectives of promoting transportation electrification, enhancing energy security, and reducing emissions.

Suggested Citation

  • Rajeshkumar Ramraj & Ehsan Pashajavid & Sanath Alahakoon & Shantha Jayasinghe, 2023. "Quality of Service and Associated Communication Infrastructure for Electric Vehicles," Energies, MDPI, vol. 16(20), pages 1-28, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7170-:d:1264063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan de O~na & Esperanza Est'evez & Rocio de O~na, 2021. "Public transport users versus private vehicle users: differences about quality of service, satisfaction and attitudes toward public transport in Madrid (Spain)," Papers 2103.14762, arXiv.org.
    2. Afaq Ahmad & Muhammad Khalid & Zahid Ullah & Naveed Ahmad & Mohammad Aljaidi & Faheem Ahmed Malik & Umar Manzoor, 2022. "Electric Vehicle Charging Modes, Technologies and Applications of Smart Charging," Energies, MDPI, vol. 15(24), pages 1-32, December.
    3. Davidov, Sreten & Pantoš, Miloš, 2019. "Optimization model for charging infrastructure planning with electric power system reliability check," Energy, Elsevier, vol. 166(C), pages 886-894.
    4. Ifiok Anthony Umoren & Muhammad Zeeshan Shakir, 2022. "Electric Vehicle as a Service (EVaaS): Applications, Challenges and Enablers," Energies, MDPI, vol. 15(19), pages 1-23, September.
    5. Fabian Rücker & Ilka Schoeneberger & Till Wilmschen & Ahmed Chahbaz & Philipp Dechent & Felix Hildenbrand & Elias Barbers & Matthias Kuipers & Jan Figgener & Dirk Uwe Sauer, 2022. "A Comprehensive Electric Vehicle Model for Vehicle-to-Grid Strategy Development," Energies, MDPI, vol. 15(12), pages 1-31, June.
    6. Kai Song & Yu Lan & Xian Zhang & Jinhai Jiang & Chuanyu Sun & Guang Yang & Fengshuo Yang & Hao Lan, 2023. "A Review on Interoperability of Wireless Charging Systems for Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-22, February.
    7. Bhaskar P. Rimal & Cuiyu Kong & Bikrant Poudel & Yong Wang & Pratima Shahi, 2022. "Smart Electric Vehicle Charging in the Era of Internet of Vehicles, Emerging Trends, and Open Issues," Energies, MDPI, vol. 15(5), pages 1-24, March.
    8. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    9. Oluwagbenga Apata & Pitshou N. Bokoro & Gulshan Sharma, 2023. "The Risks and Challenges of Electric Vehicle Integration into Smart Cities," Energies, MDPI, vol. 16(14), pages 1-25, July.
    10. Mohammad Shahjalal & Tamanna Shams & Moshammed Nishat Tasnim & Md Rishad Ahmed & Mominul Ahsan & Julfikar Haider, 2022. "A Critical Review on Charging Technologies of Electric Vehicles," Energies, MDPI, vol. 15(21), pages 1-26, November.
    11. Mohammad Kamrul Hasan & AKM Ahasan Habib & Shayla Islam & Mohammed Balfaqih & Khaled M. Alfawaz & Dalbir Singh, 2023. "Smart Grid Communication Networks for Electric Vehicles Empowering Distributed Energy Generation: Constraints, Challenges, and Recommendations," Energies, MDPI, vol. 16(3), pages 1-20, January.
    12. Zenginis, Ioannis & Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2016. "Analysis and quality of service evaluation of a fast charging station for electric vehicles," Energy, Elsevier, vol. 112(C), pages 669-678.
    13. Mehrdad Tarafdar-Hagh & Kamran Taghizad-Tavana & Mohsen Ghanbari-Ghalehjoughi & Sayyad Nojavan & Parisa Jafari & Amin Mohammadpour Shotorbani, 2023. "Optimizing Electric Vehicle Operations for a Smart Environment: A Comprehensive Review," Energies, MDPI, vol. 16(11), pages 1-21, May.
    14. Tehseen Mazhar & Rizwana Naz Asif & Muhammad Amir Malik & Muhammad Asgher Nadeem & Inayatul Haq & Muhammad Iqbal & Muhammad Kamran & Shahzad Ashraf, 2023. "Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    15. Hilde Tobi & Jarl K. Kampen, 2018. "Research design: the methodology for interdisciplinary research framework," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(3), pages 1209-1225, May.
    16. Graber, Giuseppe & Calderaro, Vito & Mancarella, Pierluigi & Galdi, Vincenzo, 2020. "Two-stage stochastic sizing and packetized energy scheduling of BEV charging stations with quality of service constraints," Applied Energy, Elsevier, vol. 260(C).
    17. Woo, Soomin & Bae, Sangjae & Moura, Scott J., 2021. "Pareto optimality in cost and service quality for an Electric Vehicle charging facility," Applied Energy, Elsevier, vol. 290(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajanand Patnaik Narasipuram & Subbarao Mopidevi, 2023. "A Novel Hybrid Control Strategy and Dynamic Performance Enhancement of a 3.3 kW GaN–HEMT-Based iL 2 C Resonant Full-Bridge DC–DC Power Converter Methodology for Electric Vehicle Charging Systems," Energies, MDPI, vol. 16(15), pages 1-22, August.
    2. Kabir Momoh & Shamsul Aizam Zulkifli & Petr Korba & Felix Rafael Segundo Sevilla & Arif Nur Afandi & Alfredo Velazquez-Ibañez, 2023. "State-of-the-Art Grid Stability Improvement Techniques for Electric Vehicle Fast-Charging Stations for Future Outlooks," Energies, MDPI, vol. 16(9), pages 1-29, May.
    3. Lipeng Xu & Chongwang Tian & Chunjiang Bao & Jinsheng Zhao & Xuning Leng, 2023. "Improving the Electrochemical Performance of Core–Shell LiNi 0.8 Co 0.1 Mn 0.1 O 2 Cathode Materials Using Environmentally Friendly Phase Structure Control Process," Energies, MDPI, vol. 16(10), pages 1-17, May.
    4. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    5. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    6. Jie Hu & Wentong Cao & Feng Jiang & Lingling Hu & Qian Chen & Weiguang Zheng & Junming Zhou, 2023. "Study on Multi-Objective Optimization of Power System Parameters of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    7. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    8. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    9. Fayez Alanazi & Talal Obaid Alshammari & Abdelhalim Azam, 2023. "Optimal Charging Station Placement and Scheduling for Electric Vehicles in Smart Cities," Sustainability, MDPI, vol. 15(22), pages 1-23, November.
    10. Li, Li & Ling, Lei & Xie, Yajun & Zhou, Wencai & Wang, Tianbo & Zhang, Lanchun & Bei, Shaoyi & Zheng, Keqing & Xu, Qiang, 2023. "Comparative study of thermal management systems with different cooling structures for cylindrical battery modules: Side-cooling vs. terminal-cooling," Energy, Elsevier, vol. 274(C).
    11. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    12. Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
    13. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    14. Wang, Anci & Yin, Xiang & Xin, Zhicheng & Cao, Feng & Wu, Zan & Sundén, Bengt & Xiao, Di, 2023. "Performance optimization of electric vehicle battery thermal management based on the transcritical CO2 system," Energy, Elsevier, vol. 266(C).
    15. Zhang, Furen & Lu, Fu & Liang, Beibei & Zhu, Yilin & Gou, Huan & Xiao, Kang & He, Yanxiao, 2023. "Thermal performance analysis of a new type of branch-fin enhanced battery thermal management PCM module," Renewable Energy, Elsevier, vol. 206(C), pages 1049-1063.
    16. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    17. Shan, Shuai & Li, Li & Xu, Qiang & Ling, Lei & Xie, Yajun & Wang, Hongkang & Zheng, Keqing & Zhang, Lanchun & Bei, Shaoyi, 2023. "Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module," Energy, Elsevier, vol. 274(C).
    18. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    19. Caulfield, Brian & Furszyfer, Dylan & Stefaniec, Agnieszka & Foley, Aoife, 2022. "Measuring the equity impacts of government subsidies for electric vehicles," Energy, Elsevier, vol. 248(C).
    20. Davidov, Sreten & Pantoš, Miloš, 2017. "Impact of stochastic driving range on the optimal charging infrastructure expansion planning," Energy, Elsevier, vol. 141(C), pages 603-612.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7170-:d:1264063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.