IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5811-d1210819.html
   My bibliography  Save this article

A Novel Hybrid Control Strategy and Dynamic Performance Enhancement of a 3.3 kW GaN–HEMT-Based iL 2 C Resonant Full-Bridge DC–DC Power Converter Methodology for Electric Vehicle Charging Systems

Author

Listed:
  • Rajanand Patnaik Narasipuram

    (Department of Electrical and Electronics Engineering, Vignan’s Foundation for Science Technology and Research, Guntur 522213, India)

  • Subbarao Mopidevi

    (Department of Electrical and Electronics Engineering, Vignan’s Foundation for Science Technology and Research, Guntur 522213, India)

Abstract

The conventional resonant inductor–inductor–capacitor (L 2 C) DC–DC converters have the major drawbacks of poor regulation, improper current sharing, load current ripples, conduction losses, and limiting the power levels to operate at higher loads for electric vehicle (EV) charging systems. To address the issues of the L 2 C converter, this paper proposes an interleaved inductor–inductor–capacitor (iL 2 C) full-bridge (FB) DC–DC converter as an EV charger with wide input voltage conditions. It comprises two L 2 C converters operating in parallel on the primary side with 8-GaN switches and maintains the single rectifier circuit on the secondary side as common. Further, it introduces the hybrid control strategy called variable frequency + phase shift modulation (VFPSM) technique for iL 2 C with a constant voltage charging mode operation. The design requirements, modeling, dynamic responses, and operation of an iL 2 C converter with a controller are discussed. The analysis of the proposed concept designed and simulated with an input voltage of 400 V in at a load voltage of 48 V 0 presented at different load conditions, i.e., full load (3.3 kW), half load (1.65 kW), and light load (330 W). The dynamic performances of the converter during line and load regulations are presented at assorted input voltages. In addition, to analyze the controller and converter performance, the concept was validated experimentally for wide input voltage applications of 300–500 V in with a desired output of 48 V 0 at full load condition, i.e., 3.3 kW and the practical efficiency of the iL 2 C converter was 98.2% at full load.

Suggested Citation

  • Rajanand Patnaik Narasipuram & Subbarao Mopidevi, 2023. "A Novel Hybrid Control Strategy and Dynamic Performance Enhancement of a 3.3 kW GaN–HEMT-Based iL 2 C Resonant Full-Bridge DC–DC Power Converter Methodology for Electric Vehicle Charging Systems," Energies, MDPI, vol. 16(15), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5811-:d:1210819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5811/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5811/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao-Tsung Ma, 2019. "System Planning of Grid-Connected Electric Vehicle Charging Stations and Key Technologies: A Review," Energies, MDPI, vol. 12(21), pages 1-22, November.
    2. Mohammad Shahjalal & Tamanna Shams & Moshammed Nishat Tasnim & Md Rishad Ahmed & Mominul Ahsan & Julfikar Haider, 2022. "A Critical Review on Charging Technologies of Electric Vehicles," Energies, MDPI, vol. 15(21), pages 1-26, November.
    3. Héctor Sarnago & Óscar Lucía & Iulian O. Popa & José M. Burdío, 2021. "Constant-Current Gate Driver for GaN HEMTs Applied to Resonant Power Conversion," Energies, MDPI, vol. 14(9), pages 1-10, April.
    4. Afaq Ahmad & Muhammad Khalid & Zahid Ullah & Naveed Ahmad & Mohammad Aljaidi & Faheem Ahmed Malik & Umar Manzoor, 2022. "Electric Vehicle Charging Modes, Technologies and Applications of Smart Charging," Energies, MDPI, vol. 15(24), pages 1-32, December.
    5. David Lumbreras & Manel Vilella & Jordi Zaragoza & Néstor Berbel & Josep Jordà & Alfonso Collado, 2021. "Effect of the Heat Dissipation System on Hard-Switching GaN-Based Power Converters for Energy Conversion," Energies, MDPI, vol. 14(19), pages 1-28, October.
    6. Xiao Long & Dongdong Chen, 2023. "Small Signal Modeling of LLC Converter with LED Load and Quasi-Resonant Controller Based Active Ripple Rejection," Energies, MDPI, vol. 16(9), pages 1-18, April.
    7. Salvatore Musumeci & Vincenzo Barba, 2023. "Gallium Nitride Power Devices in Power Electronics Applications: State of Art and Perspectives," Energies, MDPI, vol. 16(9), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajeshkumar Ramraj & Ehsan Pashajavid & Sanath Alahakoon & Shantha Jayasinghe, 2023. "Quality of Service and Associated Communication Infrastructure for Electric Vehicles," Energies, MDPI, vol. 16(20), pages 1-28, October.
    2. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    3. Jie Hu & Wentong Cao & Feng Jiang & Lingling Hu & Qian Chen & Weiguang Zheng & Junming Zhou, 2023. "Study on Multi-Objective Optimization of Power System Parameters of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    4. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    5. Janusz Zarębski & Damian Bisewski, 2023. "The Modeling of GaN-FET Power Devices in SPICE," Energies, MDPI, vol. 16(22), pages 1-16, November.
    6. Bruno Pinto & Filipe Barata & Constantino Soares & Carla Viveiros, 2020. "Fleet Transition from Combustion to Electric Vehicles: A Case Study in a Portuguese Business Campus," Energies, MDPI, vol. 13(5), pages 1-24, March.
    7. Mauro Zucca & Vincenzo Cirimele & Jorge Bruna & Davide Signorino & Erika Laporta & Jacopo Colussi & Miguel Angel Alonso Tejedor & Federico Fissore & Umberto Pogliano, 2021. "Assessment of the Overall Efficiency in WPT Stations for Electric Vehicles," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    8. Muhammad Shahab & Shaorong Wang & Abdul Khalique Junejo, 2021. "Improved Control Strategy for Three-Phase Microgrid Management with Electric Vehicles Using Multi Objective Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-23, February.
    9. Mowry, Andrew M. & Mallapragada, Dharik S., 2021. "Grid impacts of highway electric vehicle charging and role for mitigation via energy storage," Energy Policy, Elsevier, vol. 157(C).
    10. Srinath Belakavadi Sudarshan & Gopal Arunkumar, 2023. "Isolated DC-DC Power Converters for Simultaneous Charging of Electric Vehicle Batteries: Research Review, Design, High-Frequency Transformer Testing, Power Quality Concerns, and Future," Sustainability, MDPI, vol. 15(3), pages 1-71, February.
    11. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    12. Ali Jawad Alrubaie & Mohamed Salem & Khalid Yahya & Mahmoud Mohamed & Mohamad Kamarol, 2023. "A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    13. Andrea Stabile & Michela Longo & Wahiba Yaïci & Federica Foiadelli, 2020. "An Algorithm for Optimization of Recharging Stops: A Case Study of Electric Vehicle Charging Stations on Canadian’s Ontario Highway 401," Energies, MDPI, vol. 13(8), pages 1-19, April.
    14. Pradeep Vishnuram & Suchitra Dayalan & Sudhakar Babu Thanikanti & Karthik Balasubramanian & Benedetto Nastasi, 2021. "Single Source Multi-Frequency AC-AC Converter for Induction Cooking Applications," Energies, MDPI, vol. 14(16), pages 1-21, August.
    15. Makeen, Peter & Ghali, Hani A. & Memon, Saim & Duan, Fang, 2023. "Smart techno-economic operation of electric vehicle charging station in Egypt," Energy, Elsevier, vol. 264(C).
    16. Nandan Gopinathan & Prabhakar Karthikeyan Shanmugam, 2022. "Energy Anxiety in Decentralized Electricity Markets: A Critical Review on EV Models," Energies, MDPI, vol. 15(14), pages 1-40, July.
    17. Zhuangzhi Dai & Jilong Liu & Kefeng Li & Zhiqin Mai & Guijing Xue, 2023. "Research on a Modeling and Control Strategy for Interleaved Boost Converters with Coupled Inductors," Energies, MDPI, vol. 16(9), pages 1-15, April.
    18. Sanchari Deb, 2021. "Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review," Energies, MDPI, vol. 14(23), pages 1-19, November.
    19. Theodoros A. Skouras & Panagiotis K. Gkonis & Charalampos N. Ilias & Panagiotis T. Trakadas & Eleftherios G. Tsampasis & Theodore V. Zahariadis, 2019. "Electrical Vehicles: Current State of the Art, Future Challenges, and Perspectives," Clean Technol., MDPI, vol. 2(1), pages 1-16, December.
    20. Kabir Momoh & Shamsul Aizam Zulkifli & Petr Korba & Felix Rafael Segundo Sevilla & Arif Nur Afandi & Alfredo Velazquez-Ibañez, 2023. "State-of-the-Art Grid Stability Improvement Techniques for Electric Vehicle Fast-Charging Stations for Future Outlooks," Energies, MDPI, vol. 16(9), pages 1-29, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5811-:d:1210819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.