IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4020-d1144053.html
   My bibliography  Save this article

Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives

Author

Listed:
  • Pradeep Vishnuram

    (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankuthur, Chennai 603203, India)

  • Suresh Panchanathan

    (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankuthur, Chennai 603203, India)

  • Narayanamoorthi Rajamanickam

    (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankuthur, Chennai 603203, India)

  • Vijayakumar Krishnasamy

    (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankuthur, Chennai 603203, India)

  • Mohit Bajaj

    (Department of Electrical Engineering, Graphic Era (Deemed to be University), Dehradun 248002, India
    Graphic Era Hill University, Dehradun 248002, India
    Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan)

  • Marian Piecha

    (Ministry of Industry and Trade, 11015 Prague, Czech Republic)

  • Vojtech Blazek

    (ENET Centre, VSB—Technical University of Ostrava, 70800 Ostrava, Czech Republic)

  • Lukas Prokop

    (ENET Centre, VSB—Technical University of Ostrava, 70800 Ostrava, Czech Republic)

Abstract

Electric transportation will assist in lowering emissions of greenhouse gases and mitigating the impact of rising petrol prices. To promote the widespread adoption of electric transportation, a diverse range of charging stations must be established in an atmosphere that is friendly to users. Wireless electric vehicle charging systems are a viable alternative technology that can charge electric vehicles (EVs) without any plug-in issues. Wireless power transfer (WPT), which involves the transmission of electricity via an electromagnetic field despite the presence of an intervening area, holds out the possibility of new prospects for EVs to increase environmentally responsible mobility. This review article examines the WPT technology and how it might be applied to electric vehicles from both a technical and safety standpoint. The prime aim of this review is (1) to illustrate the current state of the art in terms of technological advances as well as research limitations in the field of WPT development and use within the field of transportation; (2) to organise the experimental the deployment of WPT EV systems in the actual world; and (3) to analyse the results over a sustainable period and to identify limitations as well as chances for growth. From a technical point of view, the progress that has been made on the selection of material for designing coils, different types of coils with a specific focus on the overall performance of the system. As a result, this study aims to provide an extensive overview focusing on the magnetic materials and the architectures of the transmitter and receiver pads.

Suggested Citation

  • Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4020-:d:1144053
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4020/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4020/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linlin Tan & Kamal Eldin Idris Elnail & Minghao Ju & Xueliang Huang, 2019. "Comparative Analysis and Design of the Shielding Techniques in WPT Systems for Charging EVs," Energies, MDPI, vol. 12(11), pages 1-20, June.
    2. Pradeep Vishnuram & Suresh P. & Narayanamoorthi R. & Vijayakumar K. & Benedetto Nastasi, 2023. "Wireless Chargers for Electric Vehicle: A Systematic Review on Converter Topologies, Environmental Assessment, and Review Policy," Energies, MDPI, vol. 16(4), pages 1-18, February.
    3. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    4. Murugan Venkatesan & Narayanamoorthi Rajamanickam & Pradeep Vishnuram & Mohit Bajaj & Vojtech Blazek & Lukas Prokop & Stanislav Misak, 2022. "A Review of Compensation Topologies and Control Techniques of Bidirectional Wireless Power Transfer Systems for Electric Vehicle Applications," Energies, MDPI, vol. 15(20), pages 1-29, October.
    5. Seyit Ahmet Sis & Emre Orta, 2018. "A Cross-Shape Coil Structure for Use in Wireless Power Applications," Energies, MDPI, vol. 11(5), pages 1-14, April.
    6. Emrullah Aydin & Mehmet Timur Aydemir & Ahmet Aksoz & Mohamed El Baghdadi & Omar Hegazy, 2022. "Inductive Power Transfer for Electric Vehicle Charging Applications: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-24, July.
    7. Linlin Tan & Jiacheng Li & Chen Chen & Changxin Yan & Jinpeng Guo & Xueliang Huang, 2016. "Analysis and Performance Improvement of WPT Systems in the Environment of Single Non-Ferromagnetic Metal Plates," Energies, MDPI, vol. 9(8), pages 1-16, July.
    8. Yong Li & Ruikun Mai & Tianren Lin & Hongjian Sun & Zhengyou He, 2017. "A Novel WPT System Based on Dual Transmitters and Dual Receivers for High Power Applications: Analysis, Design and Implementation," Energies, MDPI, vol. 10(2), pages 1-16, February.
    9. Xuezhe Wei & Zhenshi Wang & Haifeng Dai, 2014. "A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Energies, MDPI, vol. 7(7), pages 1-26, July.
    10. Kafeel Ahmed Kalwar & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan, 2016. "Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    11. Bi, Zicheng & Kan, Tianze & Mi, Chunting Chris & Zhang, Yiming & Zhao, Zhengming & Keoleian, Gregory A., 2016. "A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility," Applied Energy, Elsevier, vol. 179(C), pages 413-425.
    12. Kai Song & Yu Lan & Xian Zhang & Jinhai Jiang & Chuanyu Sun & Guang Yang & Fengshuo Yang & Hao Lan, 2023. "A Review on Interoperability of Wireless Charging Systems for Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-22, February.
    13. María Carmen Pardo-Ferreira & Juan Antonio Torrecilla-García & Carlos de las Heras-Rosas & Juan Carlos Rubio-Romero, 2020. "New Risk Situations Related to Low Noise from Electric Vehicles: Perception of Workers as Pedestrians and Other Vehicle Drivers," IJERPH, MDPI, vol. 17(18), pages 1-16, September.
    14. Rubino, Luigi & Capasso, Clemente & Veneri, Ottorino, 2017. "Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility," Applied Energy, Elsevier, vol. 207(C), pages 438-464.
    15. Elzbieta Rynska, 2022. "Review of PV Solar Energy Development 2011–2021 in Central European Countries," Energies, MDPI, vol. 15(21), pages 1-18, November.
    16. Manh Tuan Tran & Sarath Thekkan & Hakan Polat & Dai-Duong Tran & Mohamed El Baghdadi & Omar Hegazy, 2023. "Inductive Wireless Power Transfer Systems for Low-Voltage and High-Current Electric Mobility Applications: Review and Design Example," Energies, MDPI, vol. 16(7), pages 1-42, March.
    17. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adel Razek, 2024. "One Health Ecological Approach to Sustainable Wireless Energy Transfer Aboard Electric Vehicles for Smart Cities," Energies, MDPI, vol. 17(17), pages 1-21, August.
    2. Franklin John & Pongiannan Rakkiya Goundar Komarasamy & Narayanamoorthi Rajamanickam & Lukas Vavra & Jan Petrov & Vladimir Kral, 2024. "Performance Improvement of Wireless Power Transfer System for Sustainable EV Charging Using Dead-Time Integrated Pulse Density Modulation Approach," Sustainability, MDPI, vol. 16(16), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    2. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    3. Wang, De'an & Zhang, Jiantao & Cui, Shumei & Bie, Zhi & Chen, Fuze & Zhu, Chunbo, 2024. "The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    5. Pradeep Vishnuram & Suresh P. & Narayanamoorthi R. & Vijayakumar K. & Benedetto Nastasi, 2023. "Wireless Chargers for Electric Vehicle: A Systematic Review on Converter Topologies, Environmental Assessment, and Review Policy," Energies, MDPI, vol. 16(4), pages 1-18, February.
    6. Ahmed A. S. Mohamed & Ahmed A. Shaier & Hamid Metwally & Sameh I. Selem, 2022. "An Overview of Dynamic Inductive Charging for Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-59, August.
    7. Frechter, Yotam & Kuperman, Alon, 2020. "Analysis and design of inductive wireless power transfer link for feedback-less power delivery to enclosed compartment," Applied Energy, Elsevier, vol. 278(C).
    8. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Jianfeng Hong & Mingjie Guan & Zaifa Lin & Qiu Fang & Wei Wu & Wenxiang Chen, 2019. "Series-Series/Series Compensated Inductive Power Transmission System with Symmetrical Half-Bridge Resonant Converter: Design, Analysis, and Experimental Assessment," Energies, MDPI, vol. 12(12), pages 1-17, June.
    10. Joao Victor Pinon Pereira Dias & Masafumi Miyatake, 2018. "Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer," Energies, MDPI, vol. 11(8), pages 1-25, July.
    11. Yan, Xiao-Yu & Yang, Shi-Chun & He, Hong & Tang, Tie-Qiao, 2018. "An optimization model for wireless power transfer system based on circuit simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 873-880.
    12. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    13. Xin Liu & Tianfeng Wang & Xijun Yang & Nan Jin & Houjun Tang, 2017. "Analysis and Design of a Wireless Power Transfer System with Dual Active Bridges," Energies, MDPI, vol. 10(10), pages 1-20, October.
    14. Li, Feng & Li, Yanjie & Zhou, Siqi & Chen, Yifang & Sun, Xuan & Deng, Yutong, 2022. "Wireless power transfer tuning model of electric vehicles with pavement materials as transmission media for energy conservation," Applied Energy, Elsevier, vol. 323(C).
    15. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    16. Adel Razek, 2024. "One Health Ecological Approach to Sustainable Wireless Energy Transfer Aboard Electric Vehicles for Smart Cities," Energies, MDPI, vol. 17(17), pages 1-21, August.
    17. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Gaith Baccouche & Mohamed Haikel Chehab & Chokri Ben Salah & Mehdi Tlija & Abdelhamid Rabhi, 2024. "Hybrid PVP/Battery/Fuel Cell Wireless Charging Stations Using High-Frequency Optimized Inverter Technology for Electric Vehicles," Energies, MDPI, vol. 17(14), pages 1-24, July.
    19. Emrullah Aydin & Mehmet Timur Aydemir & Ahmet Aksoz & Mohamed El Baghdadi & Omar Hegazy, 2022. "Inductive Power Transfer for Electric Vehicle Charging Applications: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-24, July.
    20. Francisco Javier López-Alcolea & Javier Vázquez & Emilio J. Molina-Martínez & Pedro Roncero-Sánchez & Alfonso Parreño Torres, 2020. "Monte-Carlo Analysis of the Influence of the Electrical Component Tolerances on the Behavior of Series-Series- and LCC-Compensated IPT Systems," Energies, MDPI, vol. 13(14), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4020-:d:1144053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.