IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i2p174-d89397.html
   My bibliography  Save this article

A Novel WPT System Based on Dual Transmitters and Dual Receivers for High Power Applications: Analysis, Design and Implementation

Author

Listed:
  • Yong Li

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Ruikun Mai

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Tianren Lin

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Hongjian Sun

    (School of Engineering and Computing Sciences, Durham University, Stockton Road, Durham DH1 3LE, UK)

  • Zhengyou He

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Abstract

Traditional Wireless Power Transfer (WPT) systems only have one energy transmission path, which can hardly meet the power demand for high power applications, e.g., railway applications (electric trains and trams, etc.) due to the capacity constraints of power electronic devices. A novel WPT system based on dual transmitters and dual receivers is proposed in this paper to upgrade the power capacity of the WPT system. The reliability and availability of the proposed WPT system can be dramatically improved due to the four energy transmission paths. A three-dimensional finite element analysis (FEA) tool ANSYS MAXWELL (ANSYS, Canonsburg, PA, USA) is adopted to investigate the proposed magnetic coupling structure. Besides, the effects of the crossing coupling mutual inductances among the transmitters and receivers are analyzed. It shows that the same-side cross couplings will decrease the efficiency and transmitted power. Decoupling transformers are employed to mitigate the effects of the same-side cross couplings. Meanwhile, the output voltage in the secondary side can be regulated at its designed value with a fast response performance, and the system can continue work even with a faulty inverter. Finally, a scale-down experimental setup is provided to verify the proposed approach. The experimental results indicate that the proposed method could improve the transmitted power capacity, overall efficiency and reliability, simultaneously. The proposed WPT structure is a potential alternative for high power applications.

Suggested Citation

  • Yong Li & Ruikun Mai & Tianren Lin & Hongjian Sun & Zhengyou He, 2017. "A Novel WPT System Based on Dual Transmitters and Dual Receivers for High Power Applications: Analysis, Design and Implementation," Energies, MDPI, vol. 10(2), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:174-:d:89397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/2/174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/2/174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles Moorey & William Holderbaum & Ben Potter, 2015. "Investigation of High-Efficiency Wireless Power Transfer Criteria of Resonantly-Coupled Loops and Dipoles through Analysis of the Figure of Merit," Energies, MDPI, vol. 8(10), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaoqiang Jiang & K. T. Chau & Chunhua Liu & Christopher H. T. Lee, 2017. "An Overview of Resonant Circuits for Wireless Power Transfer," Energies, MDPI, vol. 10(7), pages 1-20, June.
    2. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    3. Xu Liu & Chenyang Xia & Xibo Yuan, 2018. "Study of the Circular Flat Spiral Coil Structure Effect on Wireless Power Transfer System Performance," Energies, MDPI, vol. 11(11), pages 1-21, October.
    4. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    5. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    6. Ruikun Mai & Liwen Lu & Yong Li & Tianren Lin & Zhengyou He, 2017. "Circulating Current Reduction Strategy for Parallel-Connected Inverters Based IPT Systems," Energies, MDPI, vol. 10(3), pages 1-17, February.
    7. Xin Liu & Tianfeng Wang & Xijun Yang & Nan Jin & Houjun Tang, 2017. "Analysis and Design of a Wireless Power Transfer System with Dual Active Bridges," Energies, MDPI, vol. 10(10), pages 1-20, October.
    8. Gongjun Liu & Bo Zhang & Wenxun Xiao & Dongyuan Qiu & Yanfeng Chen & Jiu Guan, 2018. "Omnidirectional Wireless Power Transfer System Based on Rotary Transmitting Coil for Household Appliances," Energies, MDPI, vol. 11(4), pages 1-16, April.
    9. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Rupak Kharel & Augustine Ikpehai & Haris Gacanin, 2017. "Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer," Energies, MDPI, vol. 10(4), pages 1-18, April.
    10. Ruikun Mai & Hongchao Li & Yeran Liu & Kunzhuo Zhou & Ling Fu & Zhengyou He, 2018. "A Three-Phase Dynamic Wireless Charging System with Constant Output Voltage," Energies, MDPI, vol. 11(1), pages 1-12, January.
    11. Zijia Zhang & Jun Liu & Yansong Li, 2022. "Design and Analysis of a Multi-Input Multi-Output System for High Power Based on Improved Magnetic Coupling Structure," Energies, MDPI, vol. 15(5), pages 1-17, February.
    12. Joao Victor Pinon Pereira Dias & Masafumi Miyatake, 2018. "Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer," Energies, MDPI, vol. 11(8), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Po Hu & Jieshuai Ren & Wenan Li, 2016. "Frequency-Splitting-Free Synchronous Tuning of Close-Coupling Self-Oscillating Wireless Power Transfer," Energies, MDPI, vol. 9(7), pages 1-16, June.
    2. Wei Wang & Xueliang Huang & Linlin Tan & Jinpeng Guo & Han Liu, 2016. "Optimization Design of an Inductive Energy Harvesting Device for Wireless Power Supply System Overhead High-Voltage Power Lines," Energies, MDPI, vol. 9(4), pages 1-16, March.
    3. Alicia Triviño-Cabrera & José A. Aguado Sánchez, 2018. "A Review on the Fundamentals and Practical Implementation Details of Strongly Coupled Magnetic Resonant Technology for Wireless Power Transfer," Energies, MDPI, vol. 11(10), pages 1-20, October.
    4. Jin Zhang & Chonghu Cheng, 2016. "Analysis and Optimization of Three-Resonator Wireless Power Transfer System for Predetermined-Goals Wireless Power Transmission," Energies, MDPI, vol. 9(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:174-:d:89397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.