IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p498-d95174.html
   My bibliography  Save this article

Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer

Author

Listed:
  • Matjaz Rozman

    (School of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK)

  • Michael Fernando

    (School of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK)

  • Bamidele Adebisi

    (School of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK)

  • Khaled M. Rabie

    (School of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK)

  • Rupak Kharel

    (School of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK)

  • Augustine Ikpehai

    (School of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK)

  • Haris Gacanin

    (Nokia Bell Labs Copernicuslaan 50, 2018 Antwerp, Belgium)

Abstract

This paper proposes a hybrid circuit between a conformal strongly-coupled magnetic resonance (CSCMR) and a strongly-coupled magnetic resonance (SCMR), for better wireless power transmission (WPT). This combination promises to enhance the flexibility of the proposed four-loop WPT system. The maximum efficiency at various distances is achieved by combining coupling-matching between the source and transmitting coils along with the coupling factor between the transmitting and receiving coils. Furthermore, the distance between transmitting and receiving coils is investigated along with the distance relationship between the source loop and transmission coil, in order to achieve the maximum efficiency of the proposed hybrid WPT system. The results indicate that the proposed approach can be effectively employed at distances comparatively smaller than the maximum distance without frequency matching. The achievable efficiency can be as high as 84% for the whole working range of the transmitter. In addition, the proposed hybrid system allows more spatial freedom compared to existing chargers.

Suggested Citation

  • Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Rupak Kharel & Augustine Ikpehai & Haris Gacanin, 2017. "Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer," Energies, MDPI, vol. 10(4), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:498-:d:95174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Po Hu & Jieshuai Ren & Wenan Li, 2016. "Frequency-Splitting-Free Synchronous Tuning of Close-Coupling Self-Oscillating Wireless Power Transfer," Energies, MDPI, vol. 9(7), pages 1-16, June.
    2. Feng Wen & Xueliang Huang, 2016. "Optimal Magnetic Field Shielding Method by Metallic Sheets in Wireless Power Transfer System," Energies, MDPI, vol. 9(9), pages 1-15, September.
    3. Yong Li & Ruikun Mai & Tianren Lin & Hongjian Sun & Zhengyou He, 2017. "A Novel WPT System Based on Dual Transmitters and Dual Receivers for High Power Applications: Analysis, Design and Implementation," Energies, MDPI, vol. 10(2), pages 1-16, February.
    4. Weitong Chen & Chunhua Liu & Christopher H.T. Lee & Zhiqiang Shan, 2016. "Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    5. Xuezhe Wei & Zhenshi Wang & Haifeng Dai, 2014. "A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Energies, MDPI, vol. 7(7), pages 1-26, July.
    6. Vijith Vijayakumaran Nair & Jun Rim Choi, 2016. "An Efficiency Enhancement Technique for a Wireless Power Transmission System Based on a Multiple Coil Switching Technique," Energies, MDPI, vol. 9(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alicia Triviño-Cabrera & José A. Aguado Sánchez, 2018. "A Review on the Fundamentals and Practical Implementation Details of Strongly Coupled Magnetic Resonant Technology for Wireless Power Transfer," Energies, MDPI, vol. 11(10), pages 1-20, October.
    2. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    3. Alex Burton & Zhong Wang & Dan Song & Sam Tran & Jessica Hanna & Dhrubo Ahmad & Jakob Bakall & David Clausen & Jerry Anderson & Roberto Peralta & Kirtana Sandepudi & Alex Benedetto & Ethan Yang & Diya, 2023. "Fully implanted battery-free high power platform for chronic spinal and muscular functional electrical stimulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Yongming Zhang & Zhe Yan & Li Li & Jiawei Yao, 2018. "A Hybrid Building Power Distribution System in Consideration of Supply and Demand-Side: A Short Overview and a Case Study," Energies, MDPI, vol. 11(11), pages 1-19, November.
    5. Kyeongmok Ryu & Jinho Jeong, 2018. "Automatic Adaptation of Multi-Loop Wireless Power Transfer to Variable Coupling between Transmit and Receive Coils," Energies, MDPI, vol. 11(7), pages 1-12, July.
    6. Ben Minnaert & Nobby Stevens, 2017. "Optimal Analytical Solution for a Capacitive Wireless Power Transfer System with One Transmitter and Two Receivers," Energies, MDPI, vol. 10(9), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    2. Xin Liu & Tianfeng Wang & Xijun Yang & Nan Jin & Houjun Tang, 2017. "Analysis and Design of a Wireless Power Transfer System with Dual Active Bridges," Energies, MDPI, vol. 10(10), pages 1-20, October.
    3. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    4. Joao Victor Pinon Pereira Dias & Masafumi Miyatake, 2018. "Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer," Energies, MDPI, vol. 11(8), pages 1-25, July.
    5. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    6. Shaoteng Zhang & Jinbin Zhao & Yuebao Wu & Ling Mao & Jiongyuan Xu & Jiajun Chen, 2020. "Analysis and Implementation of Inverter Wide-Range Soft Switching in WPT System Based on Class E Inverter," Energies, MDPI, vol. 13(19), pages 1-15, October.
    7. Karam Hwang & Jaeyong Cho & Dongwook Kim & Jaehyoung Park & Jong Hwa Kwon & Sang Il Kwak & Hyun Ho Park & Seungyoung Ahn, 2017. "An Autonomous Coil Alignment System for the Dynamic Wireless Charging of Electric Vehicles to Minimize Lateral Misalignment," Energies, MDPI, vol. 10(3), pages 1-20, March.
    8. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    9. Chaoqiang Jiang & K. T. Chau & Chunhua Liu & Christopher H. T. Lee, 2017. "An Overview of Resonant Circuits for Wireless Power Transfer," Energies, MDPI, vol. 10(7), pages 1-20, June.
    10. Lantao Huang & Jiahao Zou & Yihan Zhou & Yan Hong & Jing Zhang & Zinan Ding, 2019. "Effect of Vertical Metal Plate on Transfer Efficiency of the Wireless Power Transfer System," Energies, MDPI, vol. 12(19), pages 1-15, October.
    11. Ruikun Mai & Liwen Lu & Yong Li & Tianren Lin & Zhengyou He, 2017. "Circulating Current Reduction Strategy for Parallel-Connected Inverters Based IPT Systems," Energies, MDPI, vol. 10(3), pages 1-17, February.
    12. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    13. Niu, Songyan & Xu, Haiqi & Sun, Zhirui & Shao, Z.Y. & Jian, Linni, 2019. "The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Feng Wen & Xueliang Huang, 2017. "Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems," IJERPH, MDPI, vol. 14(2), pages 1-15, February.
    15. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    16. Tommaso Campi & Silvano Cruciani & Mauro Feliziani, 2018. "Wireless Power Transfer Technology Applied to an Autonomous Electric UAV with a Small Secondary Coil," Energies, MDPI, vol. 11(2), pages 1-15, February.
    17. Longzhao Sun & Houjun Tang & Yingyi Zhang, 2015. "Determining the Frequency for Load-Independent Output Current in Three-Coil Wireless Power Transfer System," Energies, MDPI, vol. 8(9), pages 1-12, September.
    18. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    19. Yushan Wang & Baowei Song & Zhaoyong Mao, 2020. "Analysis and Experiment for Wireless Power Transfer Systems with Two Kinds Shielding Coils in EVs," Energies, MDPI, vol. 13(1), pages 1-18, January.
    20. Kafeel Ahmed Kalwar & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan, 2016. "Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:498-:d:95174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.