IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3790-d274020.html
   My bibliography  Save this article

Effect of Vertical Metal Plate on Transfer Efficiency of the Wireless Power Transfer System

Author

Listed:
  • Lantao Huang

    (Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361000, China)

  • Jiahao Zou

    (Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361000, China)

  • Yihan Zhou

    (Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361000, China)

  • Yan Hong

    (Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361000, China)

  • Jing Zhang

    (Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361000, China)

  • Zinan Ding

    (Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361000, China)

Abstract

Power transfer efficiency is an important issue in wireless power transfer (WPT). In actual applications, the WPT system may be exposed to a complex electromagnetic environment. The metal which is inevitably or accidentally close to the system will impact the power transfer efficiency. Most previous research has aimed at the effect of the metallic sheet paralleled to the resonant coil. This paper focuses on the effect of the metallic plate perpendicular to the resonant coils. Firstly, based on the theoretical analysis, a simulation model is setup using COMSOL Multiphysics. The efficiencies of the double-coils magnetic resonant WPT system with the presence of the parallel and vertical aluminum plate are studied comparatively. Efficiency improvement is observed with the vertical plate while the reduction appeared with the presence of the parallel plate. The vertical metallic plate has shown a magnetic field shielding effect according to the magnetic field distribution. It can reduce the radial magnetic field and enhance the axial magnetic field. Then, the effects of the position and size of the vertical plate are studied. It is found that the transfer efficiency has a preferable improvement when the vertical aluminum plate with a larger size is placed between the resonant coils and near outer edge of the windings. Finally, the experiment is carried out to verify the effect of the vertical aluminum plate on the WPT system.

Suggested Citation

  • Lantao Huang & Jiahao Zou & Yihan Zhou & Yan Hong & Jing Zhang & Zinan Ding, 2019. "Effect of Vertical Metal Plate on Transfer Efficiency of the Wireless Power Transfer System," Energies, MDPI, vol. 12(19), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3790-:d:274020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3790/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3790/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalwar, Kafeel Ahmed & Aamir, Muhammad & Mekhilef, Saad, 2015. "Inductively coupled power transfer (ICPT) for electric vehicle charging – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 462-475.
    2. Aqeel Mahmood Jawad & Rosdiadee Nordin & Sadik Kamel Gharghan & Haider Mahmood Jawad & Mahamod Ismail, 2017. "Opportunities and Challenges for Near-Field Wireless Power Transfer: A Review," Energies, MDPI, vol. 10(7), pages 1-28, July.
    3. Bi, Zicheng & Kan, Tianze & Mi, Chunting Chris & Zhang, Yiming & Zhao, Zhengming & Keoleian, Gregory A., 2016. "A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility," Applied Energy, Elsevier, vol. 179(C), pages 413-425.
    4. Feng Wen & Xueliang Huang, 2016. "Optimal Magnetic Field Shielding Method by Metallic Sheets in Wireless Power Transfer System," Energies, MDPI, vol. 9(9), pages 1-15, September.
    5. Sun, Longzhao & Ma, Dianguang & Tang, Houjun, 2018. "A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 490-503.
    6. Xuezhe Wei & Zhenshi Wang & Haifeng Dai, 2014. "A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Energies, MDPI, vol. 7(7), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seongho Woo & Yujun Shin & Changmin Lee & Jaewon Rhee & Jangyong Ahn & Jungick Moon & Seokhyeon Son & Sanguk Lee & Hongseok Kim & Seungyoung Ahn, 2022. "Minimizing Leakage Magnetic Field of Wireless Power Transfer Systems Using Phase Difference Control," Energies, MDPI, vol. 15(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Ahmed A. S. Mohamed & Ahmed A. Shaier & Hamid Metwally & Sameh I. Selem, 2022. "An Overview of Dynamic Inductive Charging for Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-59, August.
    3. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    4. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    5. Niu, Songyan & Xu, Haiqi & Sun, Zhirui & Shao, Z.Y. & Jian, Linni, 2019. "The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Li, Lantian & Wang, Zhenpo & Gao, Feng & Wang, Shuo & Deng, Junjun, 2020. "A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger," Applied Energy, Elsevier, vol. 260(C).
    7. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    8. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    9. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    10. Wang, De'an & Zhang, Jiantao & Cui, Shumei & Bie, Zhi & Chen, Fuze & Zhu, Chunbo, 2024. "The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. CΓ©dric Lecluyse & Ben Minnaert & Michael Kleemann, 2021. "A Review of the Current State of Technology of Capacitive Wireless Power Transfer," Energies, MDPI, vol. 14(18), pages 1-22, September.
    12. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    13. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Andong Yin & Shenchun Wu & Weihan Li & Jinfang Hu, 2019. "Analysis of Battery Reduction for an Improved Opportunistic Wireless-Charged Electric Bus," Energies, MDPI, vol. 12(15), pages 1-24, July.
    15. Xin Dai & Xiaofei Li & Yanling Li & Pengqi Deng & Chunsen Tang, 2017. "A Maximum Power Transfer Tracking Method for WPT Systems with Coupling Coefficient Identification Considering Two-Value Problem," Energies, MDPI, vol. 10(10), pages 1-13, October.
    16. Jacek Maciej Stankiewicz & Agnieszka Choroszucho, 2021. "Efficiency of the Wireless Power Transfer System with Planar Coils in the Periodic and Aperiodic Systems," Energies, MDPI, vol. 15(1), pages 1-27, December.
    17. Jacek Maciej Stankiewicz & Agnieszka Choroszucho, 2021. "Comparison of the Efficiency and Load Power in Periodic Wireless Power Transfer Systems with Circular and Square Planar Coils," Energies, MDPI, vol. 14(16), pages 1-24, August.
    18. Narayanamoorthi Rajamanickam & Yuvaraja Shanmugam & Rahulkumar Jayaraman & Jan Petrov & Lukas Vavra & Radomir Gono, 2024. "Review of Compensation Topologies Power Converters Coil Structure and Architectures for Dynamic Wireless Charging System for Electric Vehicle," Energies, MDPI, vol. 17(15), pages 1-42, August.
    19. Zhang, Jian & Tang, Tie-Qiao & Yan, Yadan & Qu, Xiaobo, 2021. "Eco-driving control for connected and automated electric vehicles at signalized intersections with wireless charging," Applied Energy, Elsevier, vol. 282(PA).
    20. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Rupak Kharel & Augustine Ikpehai & Haris Gacanin, 2017. "Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer," Energies, MDPI, vol. 10(4), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3790-:d:274020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.