IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p45-d124486.html
   My bibliography  Save this article

A Three-Phase Dynamic Wireless Charging System with Constant Output Voltage

Author

Listed:
  • Ruikun Mai

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Hongchao Li

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Yeran Liu

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Kunzhuo Zhou

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Ling Fu

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Zhengyou He

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Abstract

A dynamic wireless power transfer (WPT) system is an effective method, which can reduce charging time and extend the driving range of the electric vehicles. In the dynamic WPT systems, the output voltage may fluctuate when the receiver moves along the transmitter coils. This paper proposes a three-phase dynamic WPT charging system with overlapped three-phase transmitter coils. The overlap length is optimized to depress the fluctuation of the output voltage. These coils are powered by a three-phase inverter to generate an even magnetic field, and a unipolar coil is employed as a receiver to simplify the coil structure of the secondary side. Based on the proposed three-phase coil structure, the output voltage characteristics of the system are analyzed in detail. A 500 W dynamic charging prototype is established to validate the proposed dynamic charging system. Experimental results show that the output voltage fluctuation is within ±3.05%. The maximum system efficiency reaches 89.94%.

Suggested Citation

  • Ruikun Mai & Hongchao Li & Yeran Liu & Kunzhuo Zhou & Ling Fu & Zhengyou He, 2018. "A Three-Phase Dynamic Wireless Charging System with Constant Output Voltage," Energies, MDPI, vol. 11(1), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:45-:d:124486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/45/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/45/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kunwar Aditya & Sheldon Williamson, 2016. "Linearization and Control of Series-Series Compensated Inductive Power Transfer System Based on Extended Describing Function Concept," Energies, MDPI, vol. 9(11), pages 1-16, November.
    2. Yong Li & Ruikun Mai & Tianren Lin & Hongjian Sun & Zhengyou He, 2017. "A Novel WPT System Based on Dual Transmitters and Dual Receivers for High Power Applications: Analysis, Design and Implementation," Energies, MDPI, vol. 10(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Tian & Jindong Tian & Dong Li & Shijie Zhou, 2018. "A Multiple Legs Inverter with Real Time–Reflected Load Detection Used in the Dynamic Wireless Charging System of Electric Vehicles," Energies, MDPI, vol. 11(5), pages 1-20, May.
    2. Jaber Abu Qahouq & Yuan Cao, 2018. "Control Scheme and Power Electronics Architecture for a Wirelessly Distributed and Enabled Battery Energy Storage System," Energies, MDPI, vol. 11(7), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruikun Mai & Liwen Lu & Yong Li & Tianren Lin & Zhengyou He, 2017. "Circulating Current Reduction Strategy for Parallel-Connected Inverters Based IPT Systems," Energies, MDPI, vol. 10(3), pages 1-17, February.
    2. Rejaul Islam & S M Sajjad Hossain Rafin & Osama A. Mohammed, 2022. "Comprehensive Review of Power Electronic Converters in Electric Vehicle Applications," Forecasting, MDPI, vol. 5(1), pages 1-59, December.
    3. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    4. Joao Victor Pinon Pereira Dias & Masafumi Miyatake, 2018. "Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer," Energies, MDPI, vol. 11(8), pages 1-25, July.
    5. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    6. Xin Liu & Tianfeng Wang & Xijun Yang & Nan Jin & Houjun Tang, 2017. "Analysis and Design of a Wireless Power Transfer System with Dual Active Bridges," Energies, MDPI, vol. 10(10), pages 1-20, October.
    7. Gongjun Liu & Bo Zhang & Wenxun Xiao & Dongyuan Qiu & Yanfeng Chen & Jiu Guan, 2018. "Omnidirectional Wireless Power Transfer System Based on Rotary Transmitting Coil for Household Appliances," Energies, MDPI, vol. 11(4), pages 1-16, April.
    8. Zijia Zhang & Jun Liu & Yansong Li, 2022. "Design and Analysis of a Multi-Input Multi-Output System for High Power Based on Improved Magnetic Coupling Structure," Energies, MDPI, vol. 15(5), pages 1-17, February.
    9. Ravikiran Vaka & Ritesh Kumar Keshri, 2017. "Review on Contactless Power Transfer for Electric Vehicle Charging," Energies, MDPI, vol. 10(5), pages 1-20, May.
    10. Xu Liu & Chenyang Xia & Xibo Yuan, 2018. "Study of the Circular Flat Spiral Coil Structure Effect on Wireless Power Transfer System Performance," Energies, MDPI, vol. 11(11), pages 1-21, October.
    11. Chaoqiang Jiang & K. T. Chau & Chunhua Liu & Christopher H. T. Lee, 2017. "An Overview of Resonant Circuits for Wireless Power Transfer," Energies, MDPI, vol. 10(7), pages 1-20, June.
    12. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Rupak Kharel & Augustine Ikpehai & Haris Gacanin, 2017. "Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer," Energies, MDPI, vol. 10(4), pages 1-18, April.
    13. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    14. Supapong Nutwong & Anawach Sangswang & Sumate Naetiladdanon & Ekkachai Mujjalinvimut, 2018. "A Novel Output Power Control of Wireless Powering Kitchen Appliance System with Free-Positioning Feature," Energies, MDPI, vol. 11(7), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:45-:d:124486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.