IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v5y2022i1p2-80d1019250.html
   My bibliography  Save this article

Comprehensive Review of Power Electronic Converters in Electric Vehicle Applications

Author

Listed:
  • Rejaul Islam

    (EEE Department, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh)

  • S M Sajjad Hossain Rafin

    (Energy Systems Research Laboratory, ECE Department, Florida International University, Miami, FL 33174, USA)

  • Osama A. Mohammed

    (Energy Systems Research Laboratory, ECE Department, Florida International University, Miami, FL 33174, USA)

Abstract

Emerging electric vehicle (EV) technology requires high-voltage energy storage systems, efficient electric motors, electrified power trains, and power converters. If we consider forecasts for EV demand and driving applications, this article comprehensively reviewed power converter topologies, control schemes, output power, reliability, losses, switching frequency, operations, charging systems, advantages, and disadvantages. This article is intended to help engineers and researchers forecast typical recharging/discharging durations, the lifetime of energy storage with the help of control systems and machine learning, and the performance probability of using AlGaN/GaN heterojunction-based high-electron-mobility transistors (HEMTs) in EV systems. The analysis of this extensive review paper suggests that the Vienna rectifier provides significant performance among all AC–DC rectifier converters. Moreover, the multi-device interleaved DC–DC boost converter is best suited for the DC–DC conversion stage. Among DC–AC converters, the third harmonic injected seven-level inverter is found to be one of the best in EV driving. Furthermore, the utilization of multi-level inverters can terminate the requirement of the intermediate DC–DC converter. In addition, the current status, opportunities, challenges, and applications of wireless power transfer in hybrid and all-electric vehicles were also discussed in this paper. Moreover, the adoption of wide bandgap semiconductors was considered. Because of their higher power density, breakdown voltage, and switching frequency characteristics, a light yet efficient power converter design can be achieved for EVs. Finally, the article’s intent was to provide a reference for engineers and researchers in the automobile industry for forecasting calculations.

Suggested Citation

  • Rejaul Islam & S M Sajjad Hossain Rafin & Osama A. Mohammed, 2022. "Comprehensive Review of Power Electronic Converters in Electric Vehicle Applications," Forecasting, MDPI, vol. 5(1), pages 1-59, December.
  • Handle: RePEc:gam:jforec:v:5:y:2022:i:1:p:2-80:d:1019250
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/5/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/5/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marongiu, Andrea & Nußbaum, Felix Gerd Wilhelm & Waag, Wladislaw & Garmendia, Maitane & Sauer, Dirk Uwe, 2016. "Comprehensive study of the influence of aging on the hysteresis behavior of a lithium iron phosphate cathode-based lithium ion battery – An experimental investigation of the hysteresis," Applied Energy, Elsevier, vol. 171(C), pages 629-645.
    2. Capasso, Clemente & Veneri, Ottorino, 2014. "Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles," Applied Energy, Elsevier, vol. 136(C), pages 921-930.
    3. Yi Wang & Fei Lin & Zhongping Yang & Zhiyuan Liu, 2017. "Analysis of the Influence of Compensation Capacitance Errors of a Wireless Power Transfer System with SS Topology," Energies, MDPI, vol. 10(12), pages 1-14, December.
    4. Sajib Chakraborty & Hai-Nam Vu & Mohammed Mahedi Hasan & Dai-Duong Tran & Mohamed El Baghdadi & Omar Hegazy, 2019. "DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends," Energies, MDPI, vol. 12(8), pages 1-43, April.
    5. Kunwar Aditya & Sheldon Williamson, 2016. "Linearization and Control of Series-Series Compensated Inductive Power Transfer System Based on Extended Describing Function Concept," Energies, MDPI, vol. 9(11), pages 1-16, November.
    6. Deepak Ronanki & Apoorva Kelkar & Sheldon S. Williamson, 2019. "Extreme Fast Charging Technology—Prospects to Enhance Sustainable Electric Transportation," Energies, MDPI, vol. 12(19), pages 1-17, September.
    7. Bradley, Thomas H. & Frank, Andrew A., 2009. "Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 115-128, January.
    8. Zheng, Yanchong & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2019. "Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 424-439.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    2. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    3. Opitz, A. & Badami, P. & Shen, L. & Vignarooban, K. & Kannan, A.M., 2017. "Can Li-Ion batteries be the panacea for automotive applications?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 685-692.
    4. Reddi Khasim, Shaik & Dhanamjayulu, C., 2021. "Selection parameters and synthesis of multi-input converters for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Aziz Rachid & Hassan El Fadil & Khawla Gaouzi & Kamal Rachid & Abdellah Lassioui & Zakariae El Idrissi & Mohamed Koundi, 2022. "Electric Vehicle Charging Systems: Comprehensive Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    6. Graham Town & Seyedfoad Taghizadeh & Sara Deilami, 2022. "Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning," Energies, MDPI, vol. 15(4), pages 1-30, February.
    7. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    8. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    9. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    10. Kristoffersen, Trine Krogh & Capion, Karsten & Meibom, Peter, 2011. "Optimal charging of electric drive vehicles in a market environment," Applied Energy, Elsevier, vol. 88(5), pages 1940-1948, May.
    11. Cordiner, Stefano & Galeotti, Matteo & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Trip-based SOC management for a plugin hybrid electric vehicle," Applied Energy, Elsevier, vol. 164(C), pages 891-905.
    12. Shiau, Ching-Shin Norman & Samaras, Constantine & Hauffe, Richard & Michalek, Jeremy J., 2009. "Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2653-2663, July.
    13. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    14. Rafał Kopacz & Michał Harasimczuk & Bartosz Lasek & Rafał Miśkiewicz & Jacek Rąbkowski, 2021. "All-SiC ANPC Submodule for an Advanced 1.5 kV EV Charging System under Various Modulation Methods," Energies, MDPI, vol. 14(17), pages 1-16, September.
    15. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    16. Soomin Woo & Zhe Fu & Elpiniki Apostolaki-Iosifidou & Timothy E. Lipman, 2021. "Economic and Environmental Benefits for Electricity Grids from Spatiotemporal Optimization of Electric Vehicle Charging," Energies, MDPI, vol. 14(24), pages 1-22, December.
    17. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    18. Sajjad Haider & Peter Schegner, 2020. "Heuristic Optimization of Overloading Due to Electric Vehicles in a Low Voltage Grid," Energies, MDPI, vol. 13(22), pages 1-19, November.
    19. Galus, Matthias D. & Zima, Marek & Andersson, Göran, 2010. "On integration of plug-in hybrid electric vehicles into existing power system structures," Energy Policy, Elsevier, vol. 38(11), pages 6736-6745, November.
    20. Yilmaz, Murat, 2015. "Limitations/capabilities of electric machine technologies and modeling approaches for electric motor design and analysis in plug-in electric vehicle applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 80-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:5:y:2022:i:1:p:2-80:d:1019250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.