IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p962-d83057.html
   My bibliography  Save this article

Linearization and Control of Series-Series Compensated Inductive Power Transfer System Based on Extended Describing Function Concept

Author

Listed:
  • Kunwar Aditya

    (Department of Electrical, Computer and Software Engineering, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada)

  • Sheldon Williamson

    (Department of Electrical, Computer and Software Engineering, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada)

Abstract

The extended describing function (EDF) is a well-known method for modelling resonant converters due to its high accuracy. However, it requires complex mathematical formulation effort. This paper presents a simplified non-linear mathematical model of series-series (SS) compensated inductive power transfer (IPT) system, considering zero-voltage switching in the inverter. This simplified mathematical model permits the user to derive the small-signal model using the EDF method, with less computational effort, while maintaining the accuracy of an actual physical model. The derived model has been verified using a frequency sweep method in PLECS. The small-signal model has been used to design the voltage loop controller for a SS compensated IPT system. The designed controller was implemented on a 3.6 kW experimental setup, to test its robustness.

Suggested Citation

  • Kunwar Aditya & Sheldon Williamson, 2016. "Linearization and Control of Series-Series Compensated Inductive Power Transfer System Based on Extended Describing Function Concept," Energies, MDPI, vol. 9(11), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:962-:d:83057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/962/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/962/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravikiran Vaka & Ritesh Kumar Keshri, 2017. "Review on Contactless Power Transfer for Electric Vehicle Charging," Energies, MDPI, vol. 10(5), pages 1-20, May.
    2. Rejaul Islam & S M Sajjad Hossain Rafin & Osama A. Mohammed, 2022. "Comprehensive Review of Power Electronic Converters in Electric Vehicle Applications," Forecasting, MDPI, vol. 5(1), pages 1-59, December.
    3. Ruikun Mai & Liwen Lu & Yong Li & Tianren Lin & Zhengyou He, 2017. "Circulating Current Reduction Strategy for Parallel-Connected Inverters Based IPT Systems," Energies, MDPI, vol. 10(3), pages 1-17, February.
    4. Ruikun Mai & Hongchao Li & Yeran Liu & Kunzhuo Zhou & Ling Fu & Zhengyou He, 2018. "A Three-Phase Dynamic Wireless Charging System with Constant Output Voltage," Energies, MDPI, vol. 11(1), pages 1-12, January.
    5. Supapong Nutwong & Anawach Sangswang & Sumate Naetiladdanon & Ekkachai Mujjalinvimut, 2018. "A Novel Output Power Control of Wireless Powering Kitchen Appliance System with Free-Positioning Feature," Energies, MDPI, vol. 11(7), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:962-:d:83057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.