IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3721-d271966.html
   My bibliography  Save this article

Extreme Fast Charging Technology—Prospects to Enhance Sustainable Electric Transportation

Author

Listed:
  • Deepak Ronanki

    (Electric Mobility and Transportation Innovation (E-MOTION) Laboratory, Smart Transportation Electrification and Energy Research (STEER) Group, Department of Electrical, Faculty of Engineering and Applied Science, Computer and Software Engineering, University of Ontario Institute of Technology, Oshawa, ON L1G 0C5, Canada
    These authors contributed equally to this work.)

  • Apoorva Kelkar

    (Electric Mobility and Transportation Innovation (E-MOTION) Laboratory, Smart Transportation Electrification and Energy Research (STEER) Group, Department of Electrical, Faculty of Engineering and Applied Science, Computer and Software Engineering, University of Ontario Institute of Technology, Oshawa, ON L1G 0C5, Canada
    These authors contributed equally to this work.)

  • Sheldon S. Williamson

    (Electric Mobility and Transportation Innovation (E-MOTION) Laboratory, Smart Transportation Electrification and Energy Research (STEER) Group, Department of Electrical, Faculty of Engineering and Applied Science, Computer and Software Engineering, University of Ontario Institute of Technology, Oshawa, ON L1G 0C5, Canada
    These authors contributed equally to this work.)

Abstract

With the growing fleet of a new generation electric vehicles (EVs), it is essential to develop an adequate high power charging infrastructure that can mimic conventional gasoline fuel stations. Therefore, much research attention must be focused on the development of off-board DC fast chargers which can quickly replenish the charge in an EV battery. However, use of the service transformer in the existing fast charging architecture adds to the system cost, size and complicates the installation process while directly connected to medium-voltage (MV) line. With continual improvements in power electronics and magnetics, solid state transformer (SST) technology can be adopted to enhance power density and efficiency of the system. This paper aims to review the current state of the art architectures and challenges of fast charging infrastructure using SST technology while directly connected to the MV line. Finally, this paper discusses technical considerations, challenges and introduces future research possibilities.

Suggested Citation

  • Deepak Ronanki & Apoorva Kelkar & Sheldon S. Williamson, 2019. "Extreme Fast Charging Technology—Prospects to Enhance Sustainable Electric Transportation," Energies, MDPI, vol. 12(19), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3721-:d:271966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3721/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3721/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ryan Collin & Yu Miao & Alex Yokochi & Prasad Enjeti & Annette von Jouanne, 2019. "Advanced Electric Vehicle Fast-Charging Technologies," Energies, MDPI, vol. 12(10), pages 1-26, May.
    2. Muratori, Matteo & Elgqvist, Emma & Cutler, Dylan & Eichman, Joshua & Salisbury, Shawn & Fuller, Zachary & Smart, John, 2019. "Technology solutions to mitigate electricity cost for electric vehicle DC fast charging," Applied Energy, Elsevier, vol. 242(C), pages 415-423.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mena ElMenshawy & Ahmed Massoud, 2020. "Hybrid Multimodule DC-DC Converters for Ultrafast Electric Vehicle Chargers," Energies, MDPI, vol. 13(18), pages 1-28, September.
    2. Jay Johnson & Timothy Berg & Benjamin Anderson & Brian Wright, 2022. "Review of Electric Vehicle Charger Cybersecurity Vulnerabilities, Potential Impacts, and Defenses," Energies, MDPI, vol. 15(11), pages 1-26, May.
    3. Halise Kilicoglu & Pietro Tricoli, 2023. "Technical Review and Survey of Future Trends of Power Converters for Fast-Charging Stations of Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-19, July.
    4. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    5. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    6. Christodoulos Katis & Athanasios Karlis, 2023. "Evolution of Equipment in Electromobility and Autonomous Driving Regarding Safety Issues," Energies, MDPI, vol. 16(3), pages 1-34, January.
    7. Rejaul Islam & S M Sajjad Hossain Rafin & Osama A. Mohammed, 2022. "Comprehensive Review of Power Electronic Converters in Electric Vehicle Applications," Forecasting, MDPI, vol. 5(1), pages 1-59, December.
    8. Dokrak Insan & Wattanapong Rakwichian & Parichart Rachapradit & Prapita Thanarak, 2022. "The Business Analysis of Electric Vehicle Charging Stations to Power Environmentally Friendly Tourism: A Case Study of the Khao Kho Route in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 102-111, November.
    9. Jayaprakash Suvvala & Kannaiah Sathish Kumar, 2023. "Implementation of EFC Charging Station by Multiport Converter with Integration of RES," Energies, MDPI, vol. 16(3), pages 1-21, February.
    10. Aritra Ghosh, 2020. "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    11. Mlungisi Ntombela & Kabeya Musasa, 2023. "Load Profile and Load Flow Analysis for a Grid System with Electric Vehicles Using a Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    12. Luigi Pio di Noia & Fabio Mottola & Daniela Proto & Renato Rizzo, 2022. "Real Time Scheduling of a Microgrid Equipped with Ultra-Fast Charging Stations," Energies, MDPI, vol. 15(3), pages 1-18, January.
    13. Adrian Chmielewski & Piotr Piórkowski & Jakub Możaryn & Stepan Ozana, 2023. "Sustainable Development of Operational Infrastructure for Electric Vehicles: A Case Study for Poland," Energies, MDPI, vol. 16(11), pages 1-43, June.
    14. Rafał Kopacz & Michał Harasimczuk & Bartosz Lasek & Rafał Miśkiewicz & Jacek Rąbkowski, 2021. "All-SiC ANPC Submodule for an Advanced 1.5 kV EV Charging System under Various Modulation Methods," Energies, MDPI, vol. 14(17), pages 1-16, September.
    15. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    16. Sara Deilami & S. M. Muyeen, 2020. "An Insight into Practical Solutions for Electric Vehicle Charging in Smart Grid," Energies, MDPI, vol. 13(7), pages 1-13, March.
    17. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    18. Aziz Rachid & Hassan El Fadil & Khawla Gaouzi & Kamal Rachid & Abdellah Lassioui & Zakariae El Idrissi & Mohamed Koundi, 2022. "Electric Vehicle Charging Systems: Comprehensive Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    19. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    20. Rehman, Waqas ur & Bo, Rui & Mehdipourpicha, Hossein & Kimball, Jonathan W., 2022. "Sizing battery energy storage and PV system in an extreme fast charging station considering uncertainties and battery degradation," Applied Energy, Elsevier, vol. 313(C).
    21. Graham Town & Seyedfoad Taghizadeh & Sara Deilami, 2022. "Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning," Energies, MDPI, vol. 15(4), pages 1-30, February.
    22. Jorge Martins & F. P. Brito, 2020. "Alternative Fuels for Internal Combustion Engines," Energies, MDPI, vol. 13(16), pages 1-34, August.
    23. Phuoc Sang Huynh & Deepak Ronanki & Deepa Vincent & Sheldon S. Williamson, 2020. "Overview and Comparative Assessment of Single-Phase Power Converter Topologies of Inductive Wireless Charging Systems," Energies, MDPI, vol. 13(9), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerzy Ryszard Szymanski & Marta Zurek-Mortka & Daniel Wojciechowski & Nikolai Poliakov, 2020. "Unidirectional DC/DC Converter with Voltage Inverter for Fast Charging of Electric Vehicle Batteries," Energies, MDPI, vol. 13(18), pages 1-17, September.
    2. Bandara, T.G. Thusitha Asela & Viera, J.C. & González, M., 2022. "The next generation of fast charging methods for Lithium-ion batteries: The natural current-absorption methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Hasan Huseyin Coban & Aysha Rehman & Abdullah Mohamed, 2022. "Analyzing the Societal Cost of Electric Roads Compared to Batteries and Oil for All Forms of Road Transport," Energies, MDPI, vol. 15(5), pages 1-20, March.
    4. Wang, Hua & Zhao, De & Cai, Yutong & Meng, Qiang & Ong, Ghim Ping, 2021. "Taxi trajectory data based fast-charging facility planning for urban electric taxi systems," Applied Energy, Elsevier, vol. 286(C).
    5. Dominika Kaczorowska & Jacek Rezmer & Michal Jasinski & Tomasz Sikorski & Vishnu Suresh & Zbigniew Leonowicz & Pawel Kostyla & Jaroslaw Szymanda & Przemyslaw Janik, 2020. "A Case Study on Battery Energy Storage System in a Virtual Power Plant: Defining Charging and Discharging Characteristics," Energies, MDPI, vol. 13(24), pages 1-22, December.
    6. Baumgarte, Felix & Kaiser, Matthias & Keller, Robert, 2021. "Policy support measures for widespread expansion of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 156(C).
    7. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    8. Dongxu Guo & Geng Yang & Guangjin Zhao & Mengchao Yi & Xuning Feng & Xuebing Han & Languang Lu & Minggao Ouyang, 2020. "Determination of the Differential Capacity of Lithium-Ion Batteries by the Deconvolution of Electrochemical Impedance Spectra," Energies, MDPI, vol. 13(4), pages 1-14, February.
    9. Zhao, Yang & Wang, Zhenpo & Shen, Zuo-Jun Max & Sun, Fengchun, 2021. "Data-driven framework for large-scale prediction of charging energy in electric vehicles," Applied Energy, Elsevier, vol. 282(PB).
    10. Afshar, Shahab & Macedo, Pablo & Mohamed, Farog & Disfani, Vahid, 2021. "Mobile charging stations for electric vehicles — A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Mohammad Shahjalal & Tamanna Shams & Moshammed Nishat Tasnim & Md Rishad Ahmed & Mominul Ahsan & Julfikar Haider, 2022. "A Critical Review on Charging Technologies of Electric Vehicles," Energies, MDPI, vol. 15(21), pages 1-26, November.
    12. Xinrong Huang & Yuanyuan Li & Anirudh Budnar Acharya & Xin Sui & Jinhao Meng & Remus Teodorescu & Daniel-Ioan Stroe, 2020. "A Review of Pulsed Current Technique for Lithium-ion Batteries," Energies, MDPI, vol. 13(10), pages 1-18, May.
    13. Sun, Chuyu & Zhao, Xiaoli & Qi, Binbin & Xiao, Weihao & Zhang, Hongjun, 2022. "Economic and environmental analysis of coupled PV-energy storage-charging station considering location and scale," Applied Energy, Elsevier, vol. 328(C).
    14. Marta Borowska-Stefańska & Michał Kowalski & Paulina Kurzyk & Miroslava Mikušová & Szymon Wiśniewski, 2021. "Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland," Energies, MDPI, vol. 14(13), pages 1-24, June.
    15. Graham Town & Seyedfoad Taghizadeh & Sara Deilami, 2022. "Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning," Energies, MDPI, vol. 15(4), pages 1-30, February.
    16. Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    17. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    18. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    19. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    20. Elma, Onur, 2020. "A dynamic charging strategy with hybrid fast charging station for electric vehicles," Energy, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3721-:d:271966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.