IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3838-d582344.html
   My bibliography  Save this article

Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland

Author

Listed:
  • Marta Borowska-Stefańska

    (Faculty of Geographical Sciences, University of Lodz, 90-142 Łódź, Poland)

  • Michał Kowalski

    (Faculty of Geographical Sciences, University of Lodz, 90-142 Łódź, Poland)

  • Paulina Kurzyk

    (Faculty of Geographical Sciences, University of Lodz, 90-142 Łódź, Poland)

  • Miroslava Mikušová

    (Faculty of Operation and Economics of Transport and Communications, University of Zilina, 010 26 Zilina, Slovakia)

  • Szymon Wiśniewski

    (Faculty of Geographical Sciences, University of Lodz, 90-142 Łódź, Poland)

Abstract

The main purpose of this article was to determine the impact on the equilibrium of the local transport system from privileging EVs by permitting them to use bus lanes. The study used two sets of data: information on infrastructure and traffic management; and information on the recorded road network loads and traffic volumes generated by a given shopping centre—the E. Leclerc shopping centre (an important traffic generator within the city of Łódź, Poland). These sets were then used to develop a microsimulation traffic model for the shopping centre and the associated effects on the localised transport system. The model was constructed by means of the PTV Vissim software tool. An initial simulation was conducted that formed a basis for subsequent scenarios (in total, 17 simulations were performed). On the basis of the conducted analyses, it was established that—for the researched part of the transport system—privileging the still rather uncommon battery electric vehicles (BEVs) engendered a marginal deterioration of traffic conditions. At the same time, allowing BEVs to use bus lanes within the chosen research area had no negative impact on bus journey times.

Suggested Citation

  • Marta Borowska-Stefańska & Michał Kowalski & Paulina Kurzyk & Miroslava Mikušová & Szymon Wiśniewski, 2021. "Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland," Energies, MDPI, vol. 14(13), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3838-:d:582344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3838/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3838/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrzej Raszkowski & Bartosz Bartniczak, 2019. "On the Road to Sustainability: Implementation of the 2030 Agenda Sustainable Development Goals (SDG) in Poland," Sustainability, MDPI, vol. 11(2), pages 1-20, January.
    2. Rachana Vidhi & Prasanna Shrivastava, 2018. "A Review of Electric Vehicle Lifecycle Emissions and Policy Recommendations to Increase EV Penetration in India," Energies, MDPI, vol. 11(3), pages 1-15, February.
    3. Manzetti, Sergio & Mariasiu, Florin, 2015. "Electric vehicle battery technologies: From present state to future systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1004-1012.
    4. Chris Kimble & Hua Wang, 2010. "Low-cost strategy through product architecture: lessons from China," Post-Print halshs-00487368, HAL.
    5. Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
    6. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    7. Ryan Collin & Yu Miao & Alex Yokochi & Prasad Enjeti & Annette von Jouanne, 2019. "Advanced Electric Vehicle Fast-Charging Technologies," Energies, MDPI, vol. 12(10), pages 1-26, May.
    8. Roberto Ruggieri & Marco Ruggeri & Giuliana Vinci & Stefano Poponi, 2021. "Electric Mobility in a Smart City: European Overview," Energies, MDPI, vol. 14(2), pages 1-29, January.
    9. Kowalska-Pyzalska, Anna & Kott, Joanna & Kott, Marek, 2020. "Why Polish market of alternative fuel vehicles (AFVs) is the smallest in Europe? SWOT analysis of opportunities and threats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Christian Thiel & Anastasios Tsakalidis & Arnulf Jäger-Waldau, 2020. "Will Electric Vehicles Be Killed (again) or Are They the Next Mobility Killer App?," Energies, MDPI, vol. 13(7), pages 1-10, April.
    11. Fady M. A Hassouna & Khaled Al-Sahili, 2020. "Future Energy and Environmental Implications of Electric Vehicles in Palestine," Sustainability, MDPI, vol. 12(14), pages 1-12, July.
    12. Edwin R. Grijalva & José María López Martínez, 2019. "Analysis of the Reduction of CO 2 Emissions in Urban Environments by Replacing Conventional City Buses by Electric Bus Fleets: Spain Case Study," Energies, MDPI, vol. 12(3), pages 1-31, February.
    13. Ewelina Sendek-Matysiak & Zbigniew Łosiewicz, 2021. "Analysis of the Development of the Electromobility Market in Poland in the Context of the Implemented Subsidies," Energies, MDPI, vol. 14(1), pages 1-16, January.
    14. Romanika Okraszewska & Aleksandra Romanowska & Marcin Wołek & Jacek Oskarbski & Krystian Birr & Kazimierz Jamroz, 2018. "Integration of a Multilevel Transport System Model into Sustainable Urban Mobility Planning," Sustainability, MDPI, vol. 10(2), pages 1-20, February.
    15. Shafiei, Ehsan & Davidsdottir, Brynhildur & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi & Fazeli, Reza & Gestsson, Marías Halldór & Leaver, Jonathan, 2019. "Simulation-based appraisal of tax-induced electro-mobility promotion in Iceland and prospects for energy-economic development," Energy Policy, Elsevier, vol. 133(C).
    16. Bruno Canizes & João Soares & Angelo Costa & Tiago Pinto & Fernando Lezama & Paulo Novais & Zita Vale, 2019. "Electric Vehicles’ User Charging Behaviour Simulator for a Smart City," Energies, MDPI, vol. 12(8), pages 1-20, April.
    17. Bogdan Ovidiu Varga & Arsen Sagoian & Florin Mariasiu, 2019. "Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges," Energies, MDPI, vol. 12(5), pages 1-19, March.
    18. Krystian Pietrzak & Oliwia Pietrzak, 2020. "Environmental Effects of Electromobility in a Sustainable Urban Public Transport," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    19. Fotouhi, Abbas & Auger, Daniel J. & Propp, Karsten & Longo, Stefano & Wild, Mark, 2016. "A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1008-1021.
    20. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    21. Higueras-Castillo, Elena & Liébana-Cabanillas, Francisco José & Muñoz-Leiva, Francisco & García-Maroto, Inmaculada, 2019. "Evaluating consumer attitudes toward electromobility and the moderating effect of perceived consumer effectiveness," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 387-398.
    22. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeshwar Mahanta, 2018. "Impact of Electric Vehicle Charging Station Load on Distribution Network," Energies, MDPI, vol. 11(1), pages 1-25, January.
    23. Qian Zhang & Xunmin Ou & Xiaoyu Yan & Xiliang Zhang, 2017. "Electric Vehicle Market Penetration and Impacts on Energy Consumption and CO 2 Emission in the Future: Beijing Case," Energies, MDPI, vol. 10(2), pages 1-15, February.
    24. Ramona Rieckhof & Nadine May & Christoph Scope & Edeltraud Günther, 2016. "Ökonomisch-ökologischer Nettoeffekt der Elektromobilität im öffentlichen Personennahverkehr," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 24(1), pages 107-119, June.
    25. Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
    26. Marcin Połom & Maciej Tarkowski & Krystian Puzdrakiewicz & Łukasz Dopierała, 2020. "Is It Possible to Develop Electromobility in Urban Passenger Shipping in Post-Communist Countries? Evidence from Gdańsk, Poland," Energies, MDPI, vol. 13(23), pages 1-24, December.
    27. Fabien Leurent & Elisabeth Windisch, 2011. "Triggering the development of electric mobility: a review of public policies," Post-Print hal-00652472, HAL.
    28. Grzegorz Sierpiński & Marcin Staniek & Marcin Jacek Kłos, 2020. "Decision Making Support for Local Authorities Choosing the Method for Siting of In-City EV Charging Stations," Energies, MDPI, vol. 13(18), pages 1-28, September.
    29. Tie, Siang Fui & Tan, Chee Wei, 2013. "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 82-102.
    30. Anna Skowrońska-Szmer & Anna Kowalska-Pyzalska, 2021. "Key Factors of Development of Electromobility AMONG Microentrepreneurs: A Case Study from Poland," Energies, MDPI, vol. 14(3), pages 1-25, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Rabiega & Artur Gorzałczyński & Robert Jeszke & Paweł Mzyk & Krystian Szczepański, 2021. "How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-19, November.
    2. Gábor Horváth & Attila Bai & Sándor Szegedi & István Lázár & Csongor Máthé & László Huzsvai & Máté Zakar & Zoltán Gabnai & Tamás Tóth, 2023. "A Comprehensive Review of the Distinctive Tendencies of the Diffusion of E-Mobility in Central Europe," Energies, MDPI, vol. 16(14), pages 1-29, July.
    3. Krystian Pietrzak & Oliwia Pietrzak & Andrzej Montwiłł, 2021. "Effects of Incorporating Rail Transport into a Zero-Emission Urban Deliveries System: Application of Light Freight Railway (LFR) Electric Trains," Energies, MDPI, vol. 14(20), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarzyna Kubiak-Wójcicka & Filip Polak & Leszek Szczęch, 2022. "Water Power Plants Possibilities in Powering Electric Cars—Case Study: Poland," Energies, MDPI, vol. 15(4), pages 1-17, February.
    2. Wojciech Lewicki & Wojciech Drozdz, 2021. "Electromobility and its Development Prospects in the Context of Industry 4.0: A Comparative Study of Poland and the European Union," European Research Studies Journal, European Research Studies Journal, vol. 0(2B), pages 135-144.
    3. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.
    4. Siavash Khalili & Eetu Rantanen & Dmitrii Bogdanov & Christian Breyer, 2019. "Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World," Energies, MDPI, vol. 12(20), pages 1-54, October.
    5. Mikołaj Bartłomiejczyk & Marcin Połom, 2021. "Possibilities for Developing Electromobility by Using Autonomously Powered Trolleybuses Based on the Example of Gdynia," Energies, MDPI, vol. 14(10), pages 1-23, May.
    6. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    7. Zhang, Xiang & Bai, Xue, 2017. "Incentive policies from 2006 to 2016 and new energy vehicle adoption in 2010–2020 in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 24-43.
    8. Yu, Xiao & Sandhu, Navjot S. & Yang, Zhenyi & Zheng, Ming, 2020. "Suitability of energy sources for automotive application – A review," Applied Energy, Elsevier, vol. 271(C).
    9. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    10. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    11. Anna Kowalska-Pyzalska & Marek Kott & Joanna Kott, 2021. "How Much Polish Consumers Know about Alternative Fuel Vehicles? Impact of Knowledge on the Willingness to Buy," Energies, MDPI, vol. 14(5), pages 1-19, March.
    12. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
    13. Li, Jizi & Ku, Yaoyao & Yu, Yue & Liu, Chunling & Zhou, Yuping, 2020. "Optimizing production of new energy vehicles with across-chain cooperation under China’s dual credit policy," Energy, Elsevier, vol. 194(C).
    14. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    15. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    16. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    17. Kowalska-Pyzalska, Anna & Michalski, Rafał & Kott, Marek & Skowrońska-Szmer, Anna & Kott, Joanna, 2022. "Consumer preferences towards alternative fuel vehicles. Results from the conjoint analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Anna Brdulak & Grażyna Chaberek & Jacek Jagodziński, 2021. "BASS Model Analysis in “Crossing the Chasm” in E-Cars Innovation Diffusion Scenarios," Energies, MDPI, vol. 14(11), pages 1-16, May.
    19. Jerzy Ryszard Szymanski & Marta Zurek-Mortka & Daniel Wojciechowski & Nikolai Poliakov, 2020. "Unidirectional DC/DC Converter with Voltage Inverter for Fast Charging of Electric Vehicle Batteries," Energies, MDPI, vol. 13(18), pages 1-17, September.
    20. Kowalska-Pyzalska, Anna & Kott, Joanna & Kott, Marek, 2020. "Why Polish market of alternative fuel vehicles (AFVs) is the smallest in Europe? SWOT analysis of opportunities and threats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3838-:d:582344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.