IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2150-d352797.html
   My bibliography  Save this article

Overview and Comparative Assessment of Single-Phase Power Converter Topologies of Inductive Wireless Charging Systems

Author

Listed:
  • Phuoc Sang Huynh

    (Smart Transportation Electrification and Energy Research (STEER) Group, Department of Electrical, Faculty of Engineering and Applied Science, Computer and Software Engineering, University of Ontario Institute of Technology (Ontario Tech University), Oshawa, ON L1G 0C5, Canada)

  • Deepak Ronanki

    (Smart Transportation Electrification and Energy Research (STEER) Group, Department of Electrical, Faculty of Engineering and Applied Science, Computer and Software Engineering, University of Ontario Institute of Technology (Ontario Tech University), Oshawa, ON L1G 0C5, Canada)

  • Deepa Vincent

    (Smart Transportation Electrification and Energy Research (STEER) Group, Department of Electrical, Faculty of Engineering and Applied Science, Computer and Software Engineering, University of Ontario Institute of Technology (Ontario Tech University), Oshawa, ON L1G 0C5, Canada)

  • Sheldon S. Williamson

    (Smart Transportation Electrification and Energy Research (STEER) Group, Department of Electrical, Faculty of Engineering and Applied Science, Computer and Software Engineering, University of Ontario Institute of Technology (Ontario Tech University), Oshawa, ON L1G 0C5, Canada)

Abstract

The acquisition of inductive power transfer (IPT) technology in commercial electric vehicles (EVs) alleviates the inherent burdens of high cost, limited driving range, and long charging time. In EV wireless charging systems using IPT, power electronic converters play a vital role to reduce the size and cost, as well as to maximize the efficiency of the overall system. Over the past years, significant research studies have been conducted by researchers to improve the performance of power conversion systems including the power converter topologies and control schemes. This paper aims to provide an overview of the existing state-of-the-art of power converter topologies for IPT systems in EV charging applications. In this paper, the widely adopted power conversion topologies for IPT systems are selected and their performance is compared in terms of input power factor, input current distortion, current stress, voltage stress, power losses on the converter, and cost. The single-stage matrix converter based IPT systems advantageously adopt the sinusoidal ripple current (SRC) charging technique to remove the intermediate DC-link capacitors, which improves system efficiency, power density and reduces cost. Finally, technical considerations and future opportunities of power converters in EV wireless charging applications are discussed.

Suggested Citation

  • Phuoc Sang Huynh & Deepak Ronanki & Deepa Vincent & Sheldon S. Williamson, 2020. "Overview and Comparative Assessment of Single-Phase Power Converter Topologies of Inductive Wireless Charging Systems," Energies, MDPI, vol. 13(9), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2150-:d:352797
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2150/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2150/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deepak Ronanki & Apoorva Kelkar & Sheldon S. Williamson, 2019. "Extreme Fast Charging Technology—Prospects to Enhance Sustainable Electric Transportation," Energies, MDPI, vol. 12(19), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emin Yildiriz & Murat Bayraktar, 2022. "Design and Implementation of a Wireless Charging System Connected to the AC Grid for an E-Bike," Energies, MDPI, vol. 15(12), pages 1-15, June.
    2. Ching-Yao Liu & Guo-Bin Wang & Chih-Chiang Wu & Edward Yi Chang & Stone Cheng & Wei-Hua Chieng, 2021. "Derivation of the Resonance Mechanism for Wireless Power Transfer Using Class-E Amplifier," Energies, MDPI, vol. 14(3), pages 1-22, January.
    3. Demetrio Iero & Riccardo Carotenuto & Massimo Merenda & Fortunato Pezzimenti & Francesco Giuseppe Della Corte, 2022. "Performance Evaluation of Silicon and GaN Switches for a Small Wireless Power Transfer System," Energies, MDPI, vol. 15(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    2. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    3. Rejaul Islam & S M Sajjad Hossain Rafin & Osama A. Mohammed, 2022. "Comprehensive Review of Power Electronic Converters in Electric Vehicle Applications," Forecasting, MDPI, vol. 5(1), pages 1-59, December.
    4. Rafał Kopacz & Michał Harasimczuk & Bartosz Lasek & Rafał Miśkiewicz & Jacek Rąbkowski, 2021. "All-SiC ANPC Submodule for an Advanced 1.5 kV EV Charging System under Various Modulation Methods," Energies, MDPI, vol. 14(17), pages 1-16, September.
    5. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    6. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    8. Jay Johnson & Timothy Berg & Benjamin Anderson & Brian Wright, 2022. "Review of Electric Vehicle Charger Cybersecurity Vulnerabilities, Potential Impacts, and Defenses," Energies, MDPI, vol. 15(11), pages 1-26, May.
    9. Mlungisi Ntombela & Kabeya Musasa, 2023. "Load Profile and Load Flow Analysis for a Grid System with Electric Vehicles Using a Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    10. Jorge Martins & F. P. Brito, 2020. "Alternative Fuels for Internal Combustion Engines," Energies, MDPI, vol. 13(16), pages 1-34, August.
    11. Rehman, Waqas ur & Bo, Rui & Mehdipourpicha, Hossein & Kimball, Jonathan W., 2022. "Sizing battery energy storage and PV system in an extreme fast charging station considering uncertainties and battery degradation," Applied Energy, Elsevier, vol. 313(C).
    12. Adrian Chmielewski & Piotr Piórkowski & Jakub Możaryn & Stepan Ozana, 2023. "Sustainable Development of Operational Infrastructure for Electric Vehicles: A Case Study for Poland," Energies, MDPI, vol. 16(11), pages 1-43, June.
    13. Mena ElMenshawy & Ahmed Massoud, 2020. "Hybrid Multimodule DC-DC Converters for Ultrafast Electric Vehicle Chargers," Energies, MDPI, vol. 13(18), pages 1-28, September.
    14. Jayaprakash Suvvala & Kannaiah Sathish Kumar, 2023. "Implementation of EFC Charging Station by Multiport Converter with Integration of RES," Energies, MDPI, vol. 16(3), pages 1-21, February.
    15. Halise Kilicoglu & Pietro Tricoli, 2023. "Technical Review and Survey of Future Trends of Power Converters for Fast-Charging Stations of Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-19, July.
    16. Christodoulos Katis & Athanasios Karlis, 2023. "Evolution of Equipment in Electromobility and Autonomous Driving Regarding Safety Issues," Energies, MDPI, vol. 16(3), pages 1-34, January.
    17. Luigi Pio di Noia & Fabio Mottola & Daniela Proto & Renato Rizzo, 2022. "Real Time Scheduling of a Microgrid Equipped with Ultra-Fast Charging Stations," Energies, MDPI, vol. 15(3), pages 1-18, January.
    18. Sara Deilami & S. M. Muyeen, 2020. "An Insight into Practical Solutions for Electric Vehicle Charging in Smart Grid," Energies, MDPI, vol. 13(7), pages 1-13, March.
    19. Dokrak Insan & Wattanapong Rakwichian & Parichart Rachapradit & Prapita Thanarak, 2022. "The Business Analysis of Electric Vehicle Charging Stations to Power Environmentally Friendly Tourism: A Case Study of the Khao Kho Route in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 102-111, November.
    20. Aziz Rachid & Hassan El Fadil & Khawla Gaouzi & Kamal Rachid & Abdellah Lassioui & Zakariae El Idrissi & Mohamed Koundi, 2022. "Electric Vehicle Charging Systems: Comprehensive Review," Energies, MDPI, vol. 16(1), pages 1-38, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2150-:d:352797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.