IDEAS home Printed from
   My bibliography  Save this article

Optimal charging of electric drive vehicles in a market environment


  • Kristoffersen, Trine Krogh
  • Capion, Karsten
  • Meibom, Peter


With a potential to facilitate the integration of renewable energy into the electricity system, electric drive vehicles may offer a considerable flexibility by allowing for charging and discharging when desired. This paper takes the perspective of an aggregator that manages the electricity market participation of a vehicle fleet and presents a framework for optimizing charging and discharging of the electric drive vehicles, given the driving patterns of the fleet and the variations in market prices of electricity. When the aggregator is a price-taker the optimization can be stated in terms of linear programming whereas a quadratic programming formulation is required when he/she has market power. A Danish case study illustrates the construction of representative driving patterns through clustering of survey data from Western Denmark and the prediction of electricity price variations through regression on prices from the Nordic market. The results show that electric vehicles provide flexibility almost exclusively through charging. Moreover, the vehicles provide flexibility within the day but only limited flexibility from day to day when driving patterns are fixed.

Suggested Citation

  • Kristoffersen, Trine Krogh & Capion, Karsten & Meibom, Peter, 2011. "Optimal charging of electric drive vehicles in a market environment," Applied Energy, Elsevier, vol. 88(5), pages 1940-1948, May.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:5:p:1940-1948

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Chen, Haisheng & Ding, Yulong & Li, Yongliang & Zhang, Xinjing & Tan, Chunqing, 2011. "Air fuelled zero emission road transportation: A comparative study," Applied Energy, Elsevier, vol. 88(1), pages 337-342, January.
    2. Kiviluoma, Juha & Meibom, Peter, 2010. "Influence of wind power, plug-in electric vehicles, and heat storages on power system investments," Energy, Elsevier, vol. 35(3), pages 1244-1255.
    3. Pekala, Lukasz M. & Tan, Raymond R. & Foo, Dominic C.Y. & Jezowski, Jacek M., 2010. "Optimal energy planning models with carbon footprint constraints," Applied Energy, Elsevier, vol. 87(6), pages 1903-1910, June.
    4. Bradley, Thomas H. & Frank, Andrew A., 2009. "Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 115-128, January.
    5. Romm, Joseph, 2006. "The car and fuel of the future," Energy Policy, Elsevier, vol. 34(17), pages 2609-2614, November.
    6. Kudoh, Yuki & Ishitani, Hisashi & Matsuhashi, Ryuji & Yoshida, Yoshikuni & Morita, Kouji & Katsuki, Shinichi & Kobayashi, Osamu, 2001. "Environmental evaluation of introducing electric vehicles using a dynamic traffic-flow model," Applied Energy, Elsevier, vol. 69(2), pages 145-159, June.
    7. Xu, Zhaoping & Chang, Siqin, 2010. "Prototype testing and analysis of a novel internal combustion linear generator integrated power system," Applied Energy, Elsevier, vol. 87(4), pages 1342-1348, April.
    8. Tang, Yong & Yuan, Wei & Pan, Minqiang & Wan, Zhenping, 2011. "Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application," Applied Energy, Elsevier, vol. 88(1), pages 68-76, January.
    9. Katrasnik, Tomaz, 2010. "Analytical method to evaluate fuel consumption of hybrid electric vehicles at balanced energy content of the electric storage devices," Applied Energy, Elsevier, vol. 87(11), pages 3330-3339, November.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:5:p:1940-1948. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.