IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1731-d1063108.html
   My bibliography  Save this article

Wireless Chargers for Electric Vehicle: A Systematic Review on Converter Topologies, Environmental Assessment, and Review Policy

Author

Listed:
  • Pradeep Vishnuram

    (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603203, India)

  • Suresh P.

    (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603203, India)

  • Narayanamoorthi R.

    (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603203, India)

  • Vijayakumar K.

    (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603203, India)

  • Benedetto Nastasi

    (Department of Planning, Design, and Technology of Architecture, Sapienza University of Rome, Via Flaminia 72, 00196 Rome, Italy)

Abstract

The delivery of electricity employing an electromagnetic field that extends across an intervening region is called a wireless power transfer (WPT). This approach paves the way for electric vehicles (EVs) to use newly available options to reduce their environmental impact. This article is a review that examines the WPT technology for use in electric vehicle applications from both the technical aspect and the environmental impact. This review will attempt to accomplish the following objectives: (1) describe the present state of the technology behind the development and application of a WPT across the transportation industry; (2) substantiate the actual implementation of WPT EV systems; and (3) estimate the functioning of the autonomous system, as well as detect the potential stumbling blocks and openings for enhancement. The most recent advancements and implementation in compensating topologies, power electronics converters, and control techniques are dissected and debated scientifically to improve the system’s performance. To evaluate the performance from a sustainable perspective, energy, environmental, and economic factors are utilized, and at the same time, policy drivers and health and safety problems are researched.

Suggested Citation

  • Pradeep Vishnuram & Suresh P. & Narayanamoorthi R. & Vijayakumar K. & Benedetto Nastasi, 2023. "Wireless Chargers for Electric Vehicle: A Systematic Review on Converter Topologies, Environmental Assessment, and Review Policy," Energies, MDPI, vol. 16(4), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1731-:d:1063108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kafeel Ahmed Kalwar & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan, 2016. "Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    2. Andrea Cristofari, 2019. "An almost cyclic 2-coordinate descent method for singly linearly constrained problems," Computational Optimization and Applications, Springer, vol. 73(2), pages 411-452, June.
    3. Bi, Zicheng & Kan, Tianze & Mi, Chunting Chris & Zhang, Yiming & Zhao, Zhengming & Keoleian, Gregory A., 2016. "A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility," Applied Energy, Elsevier, vol. 179(C), pages 413-425.
    4. Alessandro Annarelli & Giulia Palombi, 2021. "Digitalization Capabilities for Sustainable Cyber Resilience: A Conceptual Framework," Sustainability, MDPI, vol. 13(23), pages 1-9, November.
    5. Murugan Venkatesan & Narayanamoorthi Rajamanickam & Pradeep Vishnuram & Mohit Bajaj & Vojtech Blazek & Lukas Prokop & Stanislav Misak, 2022. "A Review of Compensation Topologies and Control Techniques of Bidirectional Wireless Power Transfer Systems for Electric Vehicle Applications," Energies, MDPI, vol. 15(20), pages 1-29, October.
    6. Bi, Zicheng & Song, Lingjun & De Kleine, Robert & Mi, Chunting Chris & Keoleian, Gregory A., 2015. "Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system," Applied Energy, Elsevier, vol. 146(C), pages 11-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Deva Koresh Hezekiah & Karnam Chandrakumar Ramya & Sathya Bama Krishna Radhakrishnan & Vishnu Murthy Kumarasamy & Malathi Devendran & Avudaiammal Ramalingam & Rajagopal Maheswar, 2023. "Review of Next-Generation Wireless Devices with Self-Energy Harvesting for Sustainability Improvement," Energies, MDPI, vol. 16(13), pages 1-15, July.
    2. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    2. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    3. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Jianfeng Hong & Mingjie Guan & Zaifa Lin & Qiu Fang & Wei Wu & Wenxiang Chen, 2019. "Series-Series/Series Compensated Inductive Power Transmission System with Symmetrical Half-Bridge Resonant Converter: Design, Analysis, and Experimental Assessment," Energies, MDPI, vol. 12(12), pages 1-17, June.
    5. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    6. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    7. Liu, Zhaocai & Wang, Qichao & Sigler, Devon & Kotz, Andrew & Kelly, Kenneth J. & Lunacek, Monte & Phillips, Caleb & Garikapati, Venu, 2023. "Data-driven simulation-based planning for electric airport shuttle systems: A real-world case study," Applied Energy, Elsevier, vol. 332(C).
    8. Andong Yin & Shenchun Wu & Weihan Li & Jinfang Hu, 2019. "Analysis of Battery Reduction for an Improved Opportunistic Wireless-Charged Electric Bus," Energies, MDPI, vol. 12(15), pages 1-24, July.
    9. Shi, Jie & Gao, H. Oliver, 2022. "Efficient energy management of wireless charging roads with energy storage for coupled transportation–power systems," Applied Energy, Elsevier, vol. 323(C).
    10. Alwesabi, Yaseen & Avishan, Farzad & Yanıkoğlu, İhsan & Liu, Zhaocai & Wang, Yong, 2022. "Robust strategic planning of dynamic wireless charging infrastructure for electric buses," Applied Energy, Elsevier, vol. 307(C).
    11. Zicheng Bi & Michael A. Reiner & Gregory A. Keoleian & Yan Zhou & Michael Wang & Zhenhong Lin, 2020. "Wireless charging and shared autonomous battery electric vehicles (W+SABEV): synergies that accelerate sustainable mobility and greenhouse gas emission reduction," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 397-411, March.
    12. Konstantina Anastasiadou & Nikolaos Gavanas & Magda Pitsiava-Latinopoulou & Evangelos Bekiaris, 2021. "Infrastructure Planning for Autonomous Electric Vehicles, Integrating Safety and Sustainability Aspects: A Multi-Criteria Analysis Approach," Energies, MDPI, vol. 14(17), pages 1-19, August.
    13. Luo, Xiaoling & Fan, Wenbo, 2023. "Joint design of electric bus transit service and wireless charging facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    14. Bi, Zicheng & Keoleian, Gregory A. & Ersal, Tulga, 2018. "Wireless charger deployment for an electric bus network: A multi-objective life cycle optimization," Applied Energy, Elsevier, vol. 225(C), pages 1090-1101.
    15. Niu, Songyan & Yu, Hang & Niu, Shuangxia & Jian, Linni, 2020. "Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention," Applied Energy, Elsevier, vol. 275(C).
    16. Gang Chen & Dawei Hu & Steven Chien & Lei Guo & Mingzheng Liu, 2020. "Optimizing Wireless Charging Locations for Battery Electric Bus Transit with a Genetic Algorithm," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    17. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Alwesabi, Yaseen & Liu, Zhaocai & Kwon, Soongeol & Wang, Yong, 2021. "A novel integration of scheduling and dynamic wireless charging planning models of battery electric buses," Energy, Elsevier, vol. 230(C).
    19. Deng, Junjun & Pang, Bo & Shi, Wenli & Wang, Zhenpo, 2017. "A new integration method with minimized extra coupling effects using inductor and capacitor series-parallel compensation for wireless EV charger," Applied Energy, Elsevier, vol. 207(C), pages 405-416.
    20. Frechter, Yotam & Kuperman, Alon, 2020. "Analysis and design of inductive wireless power transfer link for feedback-less power delivery to enclosed compartment," Applied Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1731-:d:1063108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.