IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v275y2020ics0306261920308564.html
   My bibliography  Save this article

Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention

Author

Listed:
  • Niu, Songyan
  • Yu, Hang
  • Niu, Shuangxia
  • Jian, Linni

Abstract

To support e-mobility, wireless electric vehicle charging (WEVC) emerges as a promising technology by virtue of convenience characteristics and the mitigation of range anxiety. Recently, the safety issues on WEVC systems have drawn considerable attention. In light of thermal safety, the most critical part of WEVC systems is the surface of ground assembly (GA). During the charging process, its temperature increases due to the power losses, possibly resulting in cutaneous injury to living bodies and the ignition of foreign objects. Especially when there are evitable misalignments between the GA and vehicle assembly, its temperature rise will be higher as a penalty of efficiency deterioration of WEVC systems. Unfortunately, it has rarely been deemed as a safety hazard yet. Taking a commercialized WEVC system rated at 6.6 kW as an example, this paper focuses on the safety assessment of GA surface. The overtemperature-related losses, including core loss, ohm loss and eddy-current loss, are calculated. The thermal analysis is conducted based on the heat transfer theory. The temperature distribution of GA surface is obtained using transient-state FEM simulations. Based on IEC standards, four hazard levels are proposed as evaluation criteria. Finally, the calculated accuracy is validated experimentally. The results reveal direct influence of misalignments on the temperature rise. The sensitivity of different misalignments to the temperature rise is also analyzed. When the horizontal displacement exceeds 98.86 mm or the angular offset (type II) exceeds 9.91 deg., the highest hazard level could be reached, which highlights severe over-temperature risks of GA surface.

Suggested Citation

  • Niu, Songyan & Yu, Hang & Niu, Shuangxia & Jian, Linni, 2020. "Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention," Applied Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308564
    DOI: 10.1016/j.apenergy.2020.115344
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920308564
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hill, Graeme & Heidrich, Oliver & Creutzig, Felix & Blythe, Phil, 2019. "The role of electric vehicles in near-term mitigation pathways and achieving the UK’s carbon budget," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Venugopal, Prasanth & Shekhar, Aditya & Visser, Erwin & Scheele, Natalia & Chandra Mouli, Gautham Ram & Bauer, Pavol & Silvester, Sacha, 2018. "Roadway to self-healing highways with integrated wireless electric vehicle charging and sustainable energy harvesting technologies," Applied Energy, Elsevier, vol. 212(C), pages 1226-1239.
    3. Bizhong Xia & Yifan Liu & Rui Huang & Yadi Yang & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2019. "Thermal Analysis and Improvements of the Power Battery Pack with Liquid Cooling for Electric Vehicles," Energies, MDPI, vol. 12(16), pages 1-17, August.
    4. Bi, Zicheng & Kan, Tianze & Mi, Chunting Chris & Zhang, Yiming & Zhao, Zhengming & Keoleian, Gregory A., 2016. "A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility," Applied Energy, Elsevier, vol. 179(C), pages 413-425.
    5. Bi, Zicheng & Keoleian, Gregory A. & Ersal, Tulga, 2018. "Wireless charger deployment for an electric bus network: A multi-objective life cycle optimization," Applied Energy, Elsevier, vol. 225(C), pages 1090-1101.
    6. Bi, Zicheng & Song, Lingjun & De Kleine, Robert & Mi, Chunting Chris & Keoleian, Gregory A., 2015. "Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system," Applied Energy, Elsevier, vol. 146(C), pages 11-19.
    7. Lin, Haiyang & Liu, Yiling & Sun, Qie & Xiong, Rui & Li, Hailong & Wennersten, Ronald, 2018. "The impact of electric vehicle penetration and charging patterns on the management of energy hub – A multi-agent system simulation," Applied Energy, Elsevier, vol. 230(C), pages 189-206.
    8. Niu, Songyan & Xu, Haiqi & Sun, Zhirui & Shao, Z.Y. & Jian, Linni, 2019. "The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Wu, Ziyang & Wang, Can & Wolfram, Paul & Zhang, Yaxin & Sun, Xin & Hertwich, Edgar, 2019. "Assessing electric vehicle policy with region-specific carbon footprints," Applied Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songyan Niu & Qingyu Zhao & Haibiao Chen & Hang Yu & Shuangxia Niu & Linni Jian, 2022. "Underwater Wireless Charging System of Unmanned Surface Vehicles with High Power, Large Misalignment Tolerance and Light Weight: Analysis, Design and Optimization," Energies, MDPI, vol. 15(24), pages 1-19, December.
    2. Galindo, José & Serrano, José Ramón & De la Morena, Joaquín & Gómez-Vilanova, Alejandro, 2022. "Physical-based variable geometry turbines predictive control to enhance new hybrid powertrains’ transient response," Energy, Elsevier, vol. 261(PB).
    3. Baoqun Zhang & Cheng Gong & Yan Wang & Longfei Ma & Dongying Zhang & Shiwei Xia, 2023. "Research on the Collaborative Optimization of the Power Distribution Network and Traffic Network Based on Dynamic Traffic Allocation," Energies, MDPI, vol. 16(14), pages 1-15, July.
    4. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Jie & Gao, H. Oliver, 2022. "Efficient energy management of wireless charging roads with energy storage for coupled transportation–power systems," Applied Energy, Elsevier, vol. 323(C).
    2. Frechter, Yotam & Kuperman, Alon, 2020. "Analysis and design of inductive wireless power transfer link for feedback-less power delivery to enclosed compartment," Applied Energy, Elsevier, vol. 278(C).
    3. Gang Chen & Dawei Hu & Steven Chien & Lei Guo & Mingzheng Liu, 2020. "Optimizing Wireless Charging Locations for Battery Electric Bus Transit with a Genetic Algorithm," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    4. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    5. Liu, Zhaocai & Wang, Qichao & Sigler, Devon & Kotz, Andrew & Kelly, Kenneth J. & Lunacek, Monte & Phillips, Caleb & Garikapati, Venu, 2023. "Data-driven simulation-based planning for electric airport shuttle systems: A real-world case study," Applied Energy, Elsevier, vol. 332(C).
    6. Konstantina Anastasiadou & Nikolaos Gavanas & Magda Pitsiava-Latinopoulou & Evangelos Bekiaris, 2021. "Infrastructure Planning for Autonomous Electric Vehicles, Integrating Safety and Sustainability Aspects: A Multi-Criteria Analysis Approach," Energies, MDPI, vol. 14(17), pages 1-19, August.
    7. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    8. Hyukjoon Lee & Dongjin Ji & Dong-Ho Cho, 2019. "Optimal Design of Wireless Charging Electric Bus System Based on Reinforcement Learning," Energies, MDPI, vol. 12(7), pages 1-20, March.
    9. Ying Yang & Zhenpo Wang & Shuo Wang & Ni Lin, 2022. "An Investigation of Opportunity Charging with Hybrid Energy Storage System on Electric Bus with Two-Speed Transmission," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    10. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Xiong, Siqin & Wang, Yunshi & Bai, Bo & Ma, Xiaoming, 2021. "A hybrid life cycle assessment of the large-scale application of electric vehicles," Energy, Elsevier, vol. 216(C).
    12. Li, Feng & Li, Yanjie & Zhou, Siqi & Chen, Yifang & Sun, Xuan & Deng, Yutong, 2022. "Wireless power transfer tuning model of electric vehicles with pavement materials as transmission media for energy conservation," Applied Energy, Elsevier, vol. 323(C).
    13. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Andong Yin & Shenchun Wu & Weihan Li & Jinfang Hu, 2019. "Analysis of Battery Reduction for an Improved Opportunistic Wireless-Charged Electric Bus," Energies, MDPI, vol. 12(15), pages 1-24, July.
    15. Yuping Lin & Kai Zhang & Zuo-Jun Max Shen & Lixin Miao, 2019. "Charging Network Planning for Electric Bus Cities: A Case Study of Shenzhen, China," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    16. Lazzeroni, Paolo & Cirimele, Vincenzo & Canova, Aldo, 2021. "Economic and environmental sustainability of Dynamic Wireless Power Transfer for electric vehicles supporting reduction of local air pollutant emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Pradeep Vishnuram & Suresh P. & Narayanamoorthi R. & Vijayakumar K. & Benedetto Nastasi, 2023. "Wireless Chargers for Electric Vehicle: A Systematic Review on Converter Topologies, Environmental Assessment, and Review Policy," Energies, MDPI, vol. 16(4), pages 1-18, February.
    18. Alwesabi, Yaseen & Avishan, Farzad & Yanıkoğlu, İhsan & Liu, Zhaocai & Wang, Yong, 2022. "Robust strategic planning of dynamic wireless charging infrastructure for electric buses," Applied Energy, Elsevier, vol. 307(C).
    19. Young Kwan Ko & Young Dae Ko, 2023. "A Development of Optimal Design and Operation Algorithm for Battery-Powered Electric City Tour Bus System," Energies, MDPI, vol. 16(3), pages 1-16, January.
    20. Zicheng Bi & Michael A. Reiner & Gregory A. Keoleian & Yan Zhou & Michael Wang & Zhenhong Lin, 2020. "Wireless charging and shared autonomous battery electric vehicles (W+SABEV): synergies that accelerate sustainable mobility and greenhouse gas emission reduction," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 397-411, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.