IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i19p5066-d1756591.html
   My bibliography  Save this article

The Usage of Big Data in Electric Vehicle Charging: A Comprehensive Review

Author

Listed:
  • Liu Wu

    (Department of Engineering, School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

  • Min Liu

    (Department of Engineering, School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

  • Ke Gong

    (Department of Engineering, School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

  • Liudan Jiao

    (Department of Engineering, School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

  • Xiaosen Huo

    (Department of Engineering, School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

  • Yu Zhang

    (Department of Engineering, School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

  • Hao Wang

    (Department of Engineering, School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

Abstract

With major effects on power grids and people’s lifestyles, the quick uptake of electric vehicles (EVs) poses serious problems for the robustness of charging infrastructure. By enabling spatiotemporally optimal charging strategies that optimize grid operations, big data technologies provide game-changing solutions. In order to solve the following issues, this paper summarizes state-of-the-art applications of EV charging big data, which are derived from vehicles, charging stations, and power grids: (1) optimized control of grid operation; (2) charging infrastructure layout; (3) battery development; and (4) safety of charging equipment. Future research opportunities include: (1) deep integration of intelligent transportation and smart grids; (2) renewable energy and intelligent energy management optimization; (3) synergizing smart homes with EVs; and (4) AI for energy demand forecasting and automated management. This study establishes big data as a pivotal tool for low-carbon EV transition, providing actionable frameworks for researchers and policymakers to harmonize electrified transport with energy sustainability goals.

Suggested Citation

  • Liu Wu & Min Liu & Ke Gong & Liudan Jiao & Xiaosen Huo & Yu Zhang & Hao Wang, 2025. "The Usage of Big Data in Electric Vehicle Charging: A Comprehensive Review," Energies, MDPI, vol. 18(19), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5066-:d:1756591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/19/5066/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/19/5066/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tostado-Véliz, Marcos & León-Japa, Rogelio S. & Jurado, Francisco, 2021. "Optimal electrification of off-grid smart homes considering flexible demand and vehicle-to-home capabilities," Applied Energy, Elsevier, vol. 298(C).
    2. Andrenacci, N. & Genovese, A. & Ragona, R., 2017. "Determination of the level of service and customer crowding for electric charging stations through fuzzy models and simulation techniques," Applied Energy, Elsevier, vol. 208(C), pages 97-107.
    3. Yang, Xiao & Li, Yuanzheng & Zhao, Yong & Yu, Yaowen & Lian, Yicheng & Hao, Guokai & Jiang, Lin, 2023. "Data-driven nested robust optimization for generation maintenance scheduling considering temporal correlation," Energy, Elsevier, vol. 278(C).
    4. Muhammed Cavus & Dilum Dissanayake & Margaret Bell, 2025. "Next Generation of Electric Vehicles: AI-Driven Approaches for Predictive Maintenance and Battery Management," Energies, MDPI, vol. 18(5), pages 1-41, February.
    5. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    6. Zhang, Caiping & Jiang, Yan & Jiang, Jiuchun & Cheng, Gong & Diao, Weiping & Zhang, Weige, 2017. "Study on battery pack consistency evolutions and equilibrium diagnosis for serial- connected lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 510-519.
    7. Kaur, Amrit Pal & Singh, Mukesh, 2023. "Time-of-Use tariff rates estimation for optimal demand-side management using electric vehicles," Energy, Elsevier, vol. 273(C).
    8. Vidya Krishnan Mololoth & Saguna Saguna & Christer Åhlund, 2023. "Blockchain and Machine Learning for Future Smart Grids: A Review," Energies, MDPI, vol. 16(1), pages 1-39, January.
    9. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Zhang, Zhaosheng & Dorrell, David G. & Li, Xiaohui, 2022. "Battery electric vehicle usage pattern analysis driven by massive real-world data," Energy, Elsevier, vol. 250(C).
    10. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    11. Chen, Xiang & Wang, Xingxing & Deng, Yelin, 2025. "Federated learning-based prediction of electric vehicle battery pack capacity using time-domain and frequency-domain feature extraction," Energy, Elsevier, vol. 319(C).
    12. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    13. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    14. Yang, Xiong & Peng, Zhenhan & Wang, Pinxi & Zhuge, Chengxiang, 2023. "Seasonal variance in electric vehicle charging demand and its impacts on infrastructure deployment: A big data approach," Energy, Elsevier, vol. 280(C).
    15. Vinay Simha Reddy Tappeta & Bhargav Appasani & Suprava Patnaik & Taha Selim Ustun, 2022. "A Review on Emerging Communication and Computational Technologies for Increased Use of Plug-In Electric Vehicles," Energies, MDPI, vol. 15(18), pages 1-26, September.
    16. Ding, Xuefeng & Gan, Qihong & Shaker, Mir Pasha, 2023. "Optimal management of parking lots as a big data for electric vehicles using internet of things and Long–Short term Memory," Energy, Elsevier, vol. 268(C).
    17. Liu, Jianmiao & Li, Junyi & Chen, Yong & Lian, Song & Zeng, Jiaqi & Geng, Maosi & Zheng, Sijing & Dong, Yinan & He, Yan & Huang, Pei & Zhao, Zhijian & Yan, Xiaoyu & Hu, Qinru & Wang, Lei & Yang, Di & , 2023. "Multi-scale urban passenger transportation CO2 emission calculation platform for smart mobility management," Applied Energy, Elsevier, vol. 331(C).
    18. Niu, Songyan & Yu, Hang & Niu, Shuangxia & Jian, Linni, 2020. "Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention," Applied Energy, Elsevier, vol. 275(C).
    19. Kimiya Noor ali & Mohammad Hemmati & Seyed Mahdi Miraftabzadeh & Younes Mohammadi & Navid Bayati, 2024. "A Mini Review of the Impacts of Machine Learning on Mobility Electrifications," Energies, MDPI, vol. 17(23), pages 1-36, December.
    20. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.
    21. Sagaria, Shemin & van der Kam, Mart & Boström, Tobias, 2025. "Vehicle-to-grid impact on battery degradation and estimation of V2G economic compensation," Applied Energy, Elsevier, vol. 377(PB).
    22. Jianmin Jia & Chenhui Liu & Tao Wan, 2019. "Planning of the Charging Station for Electric Vehicles Utilizing Cellular Signaling Data," Sustainability, MDPI, vol. 11(3), pages 1-16, January.
    23. Wolbertus, Rick & Kroesen, Maarten & van den Hoed, Robert & Chorus, Caspar, 2018. "Fully charged: An empirical study into the factors that influence connection times at EV-charging stations," Energy Policy, Elsevier, vol. 123(C), pages 1-7.
    24. Jauhar, Sunil Kumar & Sethi, Sunil & Kamble, Sachin S. & Mathew, Shawn & Belhadi, Amine, 2024. "Artificial intelligence and machine learning-based decision support system for forecasting electric vehicles' power requirement," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    25. Chao Luo & Yih-Fang Huang & Vijay Gupta, 2018. "Stochastic Dynamic Pricing for EV Charging Stations with Renewables Integration and Energy Storage," Papers 1801.02128, arXiv.org.
    26. Xiaoyu Li & Tengyuan Wang & Jiaxu Li & Yong Tian & Jindong Tian, 2022. "Energy Consumption Estimation for Electric Buses Based on a Physical and Data-Driven Fusion Model," Energies, MDPI, vol. 15(11), pages 1-17, June.
    27. Wen, Yifan & Wu, Ruoxi & Zhou, Zihang & Zhang, Shaojun & Yang, Shengge & Wallington, Timothy J. & Shen, Wei & Tan, Qinwen & Deng, Ye & Wu, Ye, 2022. "A data-driven method of traffic emissions mapping with land use random forest models," Applied Energy, Elsevier, vol. 305(C).
    28. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    29. Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
    30. Poyrazoglu, Gokturk & Coban, Elvin, 2021. "A stochastic value estimation tool for electric vehicle charging points," Energy, Elsevier, vol. 227(C).
    31. Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
    32. Hye-Seung Han & Eunsung Oh & Sung-Yong Son, 2018. "Study on EV Charging Peak Reduction with V2G Utilizing Idle Charging Stations: The Jeju Island Case," Energies, MDPI, vol. 11(7), pages 1-13, June.
    33. Gang Zhang & Hong Liu & Tuo Xie & Hua Li & Kaoshe Zhang & Ruogu Wang, 2024. "Research on the Dispatching of Electric Vehicles Participating in Vehicle-to-Grid Interaction: Considering Grid Stability and User Benefits," Energies, MDPI, vol. 17(4), pages 1-24, February.
    34. Shajalal, Md & Boden, Alexander & Stevens, Gunnar, 2024. "ForecastExplainer: Explainable household energy demand forecasting by approximating shapley values using DeepLIFT," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    35. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    36. Andrenacci, N. & Ragona, R. & Valenti, G., 2016. "A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas," Applied Energy, Elsevier, vol. 182(C), pages 39-46.
    37. Davidov, Sreten, 2020. "Optimal charging infrastructure planning based on a charging convenience buffer," Energy, Elsevier, vol. 192(C).
    38. Jia, Chunchun & Liu, Wei & He, Hongwen & Chau, K.T., 2025. "Health-conscious energy management for fuel cell vehicles: An integrated thermal management strategy for cabin and energy source systems," Energy, Elsevier, vol. 333(C).
    39. Raiden Skala & Mohamed Ahmed T. A. Elgalhud & Katarina Grolinger & Syed Mir, 2023. "Interval Load Forecasting for Individual Households in the Presence of Electric Vehicle Charging," Energies, MDPI, vol. 16(10), pages 1-21, May.
    40. Wenig, Jürgen & Sodenkamp, Mariya & Staake, Thorsten, 2019. "Battery versus infrastructure: Tradeoffs between battery capacity and charging infrastructure for plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 255(C).
    41. Li, Yanbin & Wang, Jiani & Wang, Weiye & Liu, Chang & Li, Yun, 2023. "Dynamic pricing based electric vehicle charging station location strategy using reinforcement learning," Energy, Elsevier, vol. 281(C).
    42. Yuan, Meng & Thellufsen, Jakob Zinck & Lund, Henrik & Liang, Yongtu, 2021. "The electrification of transportation in energy transition," Energy, Elsevier, vol. 236(C).
    43. Zhao, Yang & Wang, Zhenpo & Shen, Zuo-Jun Max & Zhang, Lei & Dorrell, David G. & Sun, Fengchun, 2022. "Big data-driven decoupling framework enabling quantitative assessments of electric vehicle performance degradation," Applied Energy, Elsevier, vol. 327(C).
    44. Sun, Zhenyu & Han, Yang & Wang, Zhenpo & Chen, Yong & Liu, Peng & Qin, Zian & Zhang, Zhaosheng & Wu, Zhiqiang & Song, Chunbao, 2022. "Detection of voltage fault in the battery system of electric vehicles using statistical analysis," Applied Energy, Elsevier, vol. 307(C).
    45. Li, Ruiqi & Ren, Hongbo & Wu, Qiong & Li, Qifen & Gao, Weijun, 2024. "Cooperative economic dispatch of EV-HV coupled electric-hydrogen integrated energy system considering V2G response and carbon trading," Renewable Energy, Elsevier, vol. 227(C).
    46. Liu, Guangchuan & Wang, Bo & Li, Tong & Deng, Nana & Song, Qianqian & Zhang, Jiayuan, 2025. "Multi-objective electric-carbon synergy optimisation for electric vehicle charging: Integrating uncertainty and bounded rational behaviour models," Applied Energy, Elsevier, vol. 389(C).
    47. Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
    48. Cui, Li & Wang, Qingyuan & Qu, Hongquan & Wang, Mingshen & Wu, Yile & Ge, Le, 2023. "Dynamic pricing for fast charging stations with deep reinforcement learning," Applied Energy, Elsevier, vol. 346(C).
    49. Yang, YeHa & Yang, SoYoung & Moon, HyungBin & Woo, JongRoul, 2024. "Analyzing heterogeneous electric vehicle charging preferences for strategic time-of-use tariff design and infrastructure development: A latent class approach," Applied Energy, Elsevier, vol. 374(C).
    50. Higashitani, Takuya & Ikegami, Takashi & Uemichi, Akane & Akisawa, Atsushi, 2021. "Evaluation of residential power supply by photovoltaics and electric vehicles," Renewable Energy, Elsevier, vol. 178(C), pages 745-756.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    2. Muhammed Cavus & Huseyin Ayan & Margaret Bell & Dilum Dissanayake, 2025. "Advances in Energy Storage, AI Optimisation, and Cybersecurity for Electric Vehicle Grid Integration," Energies, MDPI, vol. 18(17), pages 1-33, August.
    3. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    4. Andrenacci, N. & Genovese, A. & Ragona, R., 2017. "Determination of the level of service and customer crowding for electric charging stations through fuzzy models and simulation techniques," Applied Energy, Elsevier, vol. 208(C), pages 97-107.
    5. Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
    6. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Zhao, Yiwen & Zhan, Weipeng, 2023. "Stacking regression technology with event profile for electric vehicle fast charging behavior prediction," Applied Energy, Elsevier, vol. 336(C).
    7. Sheng, Yujie & Zeng, Hongtai & Guo, Qinglai & Yu, Yang & Li, Qiang, 2023. "Impact of customer portrait information superiority on competitive pricing of EV fast-charging stations," Applied Energy, Elsevier, vol. 348(C).
    8. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    9. Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
    10. Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
    11. Shuping Wu & Zan Yang, 2020. "Availability of Public Electric Vehicle Charging Pile and Development of Electric Vehicle: Evidence from China," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    12. Kuang, Haoxuan & Deng, Kunxiang & You, Linlin & Li, Jun, 2025. "Citywide electric vehicle charging demand prediction approach considering urban region and dynamic influences," Energy, Elsevier, vol. 320(C).
    13. Zubi, Ghassan & Kuhn, Maximilian & Makridis, Sofoklis & Coutinho, Savio & Dorasamy, Stanley, 2025. "Aviation sector decarbonization within the hydrogen economy – A UAE case study," Energy Policy, Elsevier, vol. 198(C).
    14. Lixing Chen & Xueliang Huang & Hong Zhang, 2020. "Modeling the Charging Behaviors for Electric Vehicles Based on Ternary Symmetric Kernel Density Estimation," Energies, MDPI, vol. 13(7), pages 1-17, March.
    15. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    16. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    17. Leonardo Nogueira Fontoura da Silva & Marcelo Bruno Capeletti & Alzenira da Rosa Abaide & Luciano Lopes Pfitscher, 2024. "A Stochastic Methodology for EV Fast-Charging Load Curve Estimation Considering the Highway Traffic and User Behavior," Energies, MDPI, vol. 17(7), pages 1-27, April.
    18. Wang, Shuhui & Wang, Zhenpo & Cheng, Ximing & Zhang, Zhaosheng, 2023. "A double-layer fault diagnosis strategy for electric vehicle batteries based on Gaussian mixture model," Energy, Elsevier, vol. 281(C).
    19. Cao, Tingwei & Xu, Yinliang & Liu, Guowei & Tao, Shengyu & Tang, Wenjun & Sun, Hongbin, 2024. "Feature-enhanced deep learning method for electric vehicle charging demand probabilistic forecasting of charging station," Applied Energy, Elsevier, vol. 371(C).
    20. Zhao, Yiwen & Deng, Junjun & Liu, Peng & Zhang, Lei & Cui, Dingsong & Wang, Qiushi & Sun, Zhenyu & Wang, Zhenpo, 2025. "Enhancing battery durable operation: Multi-fault diagnosis and safety evaluation in series-connected lithium-ion battery systems," Applied Energy, Elsevier, vol. 377(PC).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5066-:d:1756591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.