IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2204-d1388293.html
   My bibliography  Save this article

Analysis, Design and Effectuation of a Tapped Inductor Current Converter with Fractional Output for Current Source Systems

Author

Listed:
  • Jie Mei

    (Power Electronics Research Center, The Hong Kong Polytechnic University, Hong Kong 999077, China)

  • Ka Wai Eric Cheng

    (Power Electronics Research Center, The Hong Kong Polytechnic University, Hong Kong 999077, China)

  • Teke Hua

    (Power Electronics Research Center, The Hong Kong Polytechnic University, Hong Kong 999077, China)

Abstract

This article proposes a new connection method of tapped inductors that works in the current source, which enables the current-mode power converter circuit to have a new topological relationship. Usually, in a switched-inductor circuit, a stable output multiple is obtained through the connection of the inductor and the switching devices. This is because the tapped point on the inductor varies, and the magnetomotive force (mmf) of inductance is adjusted. Thereby, the output current is controlled by the states of switching devices within a certain range. This optimized circuit structure can adjust the output current according to load changes in practical applications without changing the input power supply. The proposed method has been verified for its feasibility through detailed analysis and hardware work. The principal analysis based on the flux linkage and the PSIM simulation confirms that the theoretical circuit can be implemented. Finally, a hardware circuit is built to obtain real and feasible conclusions, and it is verified that the circuit can achieve a stable output and variable current within a specific range. The proposed work presents an alternative power conversion methodology using the active switching of mmf, and it is a stable and simple power conversion technique.

Suggested Citation

  • Jie Mei & Ka Wai Eric Cheng & Teke Hua, 2024. "Analysis, Design and Effectuation of a Tapped Inductor Current Converter with Fractional Output for Current Source Systems," Energies, MDPI, vol. 17(9), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2204-:d:1388293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pradeep Vishnuram & Suresh P. & Narayanamoorthi R. & Vijayakumar K. & Benedetto Nastasi, 2023. "Wireless Chargers for Electric Vehicle: A Systematic Review on Converter Topologies, Environmental Assessment, and Review Policy," Energies, MDPI, vol. 16(4), pages 1-18, February.
    2. Cuidong Xu & Ka Wai Eric Cheng, 2022. "Topology and Formation of Current Source Step Down Resonant Switched Inductor Converters," Energies, MDPI, vol. 15(5), pages 1-20, February.
    3. Xiaolin Wang & Ka Wai Eric Cheng & Yat Chi Fong, 2019. "Zero Current Switching Switched-Capacitors Balancing Circuit for Energy Storage Cell Equalization and Its Associated Hybrid Circuit with Classical Buck-Boost," Energies, MDPI, vol. 12(14), pages 1-15, July.
    4. Yueh-Tsung Shieh & Chih-Chiang Wu & Shyr-Long Jeng & Ching-Yao Liu & Shiang-Yu Hsieh & Chi-Chun Haung & Wen-Yuh Shieh & Wei-Hua Chieng & Edward-Yi Chang, 2023. "A Turn-Ratio-Changing Half-Bridge CLLC DC–DC Bidirectional Battery Charger Using a GaN HEMT," Energies, MDPI, vol. 16(16), pages 1-28, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    2. James Deva Koresh Hezekiah & Karnam Chandrakumar Ramya & Sathya Bama Krishna Radhakrishnan & Vishnu Murthy Kumarasamy & Malathi Devendran & Avudaiammal Ramalingam & Rajagopal Maheswar, 2023. "Review of Next-Generation Wireless Devices with Self-Energy Harvesting for Sustainability Improvement," Energies, MDPI, vol. 16(13), pages 1-15, July.
    3. Richard Pravin Antony & Pongiannan Rakkiya Goundar Komarasamy & Narayanamoorthi Rajamanickam & Roobaea Alroobaea & Yasser Aboelmagd, 2024. "Optimal Rotor Design and Analysis of Energy-Efficient Brushless DC Motor-Driven Centrifugal Monoset Pump for Agriculture Applications," Energies, MDPI, vol. 17(10), pages 1-17, May.
    4. Jianwen Cao & Bizhong Xia & Jie Zhou, 2021. "An Active Equalization Method for Lithium-ion Batteries Based on Flyback Transformer and Variable Step Size Generalized Predictive Control," Energies, MDPI, vol. 14(1), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2204-:d:1388293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.