IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p4962-d857306.html
   My bibliography  Save this article

Inductive Power Transfer for Electric Vehicle Charging Applications: A Comprehensive Review

Author

Listed:
  • Emrullah Aydin

    (Department of Electrical and Electronics Engineering, Malatya Turgut Ozal University, 44210 Malatya, Turkey)

  • Mehmet Timur Aydemir

    (Department of Electrical and Electronics Engineering, Kadir Has University, 34083 Istanbul, Turkey)

  • Ahmet Aksoz

    (Department of Energy Science and Technology, Sivas Cumhuriyet University, 58140 Sivas, Turkey)

  • Mohamed El Baghdadi

    (MOBI-EPOWERS Research Group, Department of Electrical Engineering and Energy Technology (ETEC), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium)

  • Omar Hegazy

    (MOBI-EPOWERS Research Group, Department of Electrical Engineering and Energy Technology (ETEC), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium)

Abstract

Nowadays, Wireless Power Transfer (WPT) technology is receiving more attention in the automotive sector, introducing a safe, flexible and promising alternative to the standard battery chargers. Considering these advantages, charging electric vehicle (EV) batteries using the WPT method can be an important alternative to plug-in charging systems. This paper focuses on the Inductive Power Transfer (IPT) method, which is based on the magnetic coupling of coils exchanging power from a stationary primary unit to a secondary system onboard the EV. A comprehensive review has been performed on the history of the evolution, working principles and phenomena, design considerations, control methods and health issues of IPT systems, especially those based on EV charging. In particular, the coil design, operating frequency selection, efficiency values and the preferred compensation topologies in the literature have been discussed. The published guidelines and reports that have studied the effects of WPT systems on human health are also given. In addition, suggested methods in the literature for protection from exposure are discussed. The control section gives the common charging control techniques and focuses on the constant current-constant voltage (CC-CV) approach, which is usually used for EV battery chargers.

Suggested Citation

  • Emrullah Aydin & Mehmet Timur Aydemir & Ahmet Aksoz & Mohamed El Baghdadi & Omar Hegazy, 2022. "Inductive Power Transfer for Electric Vehicle Charging Applications: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4962-:d:857306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/4962/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/4962/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenshi Wang & Xuezhe Wei, 2015. "Design Considerations for Wireless Charging Systems with an Analysis of Batteries," Energies, MDPI, vol. 8(10), pages 1-20, September.
    2. Kafeel Ahmed Kalwar & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan, 2016. "Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    3. Young Jae Jang & Seungmin Jeong & Min Seok Lee, 2016. "Initial Energy Logistics Cost Analysis for Stationary, Quasi-Dynamic, and Dynamic Wireless Charging Public Transportation Systems," Energies, MDPI, vol. 9(7), pages 1-23, June.
    4. Seyit Ahmet Sis & Emre Orta, 2018. "A Cross-Shape Coil Structure for Use in Wireless Power Applications," Energies, MDPI, vol. 11(5), pages 1-14, April.
    5. Yang Yang & Jinlong Cui & Xin Cui, 2020. "Design and Analysis of Magnetic Coils for Optimizing the Coupling Coefficient in an Electric Vehicle Wireless Power Transfer System," Energies, MDPI, vol. 13(16), pages 1-15, August.
    6. Won Lee & Woochan Lee & Dukju Ahn, 2022. "Maximum Efficiency Conditions Satisfying Power Regulation Constraints in Multiple-Receivers Wireless Power Transfer," Energies, MDPI, vol. 15(10), pages 1-9, May.
    7. Longzhao Sun & Houjun Tang & Yingyi Zhang, 2015. "Determining the Frequency for Load-Independent Output Current in Three-Coil Wireless Power Transfer System," Energies, MDPI, vol. 8(9), pages 1-12, September.
    8. Yang Yang & Mohamed El Baghdadi & Yuanfeng Lan & Yassine Benomar & Joeri Van Mierlo & Omar Hegazy, 2018. "Design Methodology, Modeling, and Comparative Study of Wireless Power Transfer Systems for Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-22, July.
    9. Seokhyeon Son & Seongho Woo & Haerim Kim & Jangyong Ahn & Sungryul Huh & Sanguk Lee & Seungyoung Ahn, 2022. "Shielding Sensor Coil to Reduce the Leakage Magnetic Field and Detect the Receiver Position in Wireless Power Transfer System for Electric Vehicle," Energies, MDPI, vol. 15(7), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murugan Venkatesan & Narayanamoorthi Rajamanickam & Pradeep Vishnuram & Mohit Bajaj & Vojtech Blazek & Lukas Prokop & Stanislav Misak, 2022. "A Review of Compensation Topologies and Control Techniques of Bidirectional Wireless Power Transfer Systems for Electric Vehicle Applications," Energies, MDPI, vol. 15(20), pages 1-29, October.
    2. Ali Jawad Alrubaie & Mohamed Salem & Khalid Yahya & Mahmoud Mohamed & Mohamad Kamarol, 2023. "A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    3. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    4. Josué Lara-Reyes & Mario Ponce-Silva & Leobardo Hernández-González & Susana E. DeLeón-Aldaco & Claudia Cortés-García & Jazmin Ramirez-Hernandez, 2022. "Series RLC Resonant Circuit Used as Frequency Multiplier," Energies, MDPI, vol. 15(24), pages 1-18, December.
    5. Vladimir Kindl & Tomas Kavalir & Jiri Sika & Jan Hnatik & Michal Krizek & Michal Frivaldsky, 2022. "Wireless Power Transmission System for Powering Rotating Parts of Automatic Machineries," Energies, MDPI, vol. 15(18), pages 1-15, September.
    6. Xiaochen Zhang & Xiaona Wang & Pan Sun & Jun Sun & Jin Cai, 2023. "Mutual and Self-Inductance Variation in Misaligned Coupler of Inductive Power Transfer System: Mechanism, Influence, and Solutions," Energies, MDPI, vol. 16(13), pages 1-16, July.
    7. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    8. Mincui Liang & Khalil El Khamlichi Drissi & Christopher Pasquier, 2023. "Self- and Mutual-Inductance Cross-Validation of Multi-Turn, Multi-Layer Square Coils for Dynamic Wireless Charging of Electric Vehicles," Energies, MDPI, vol. 16(20), pages 1-20, October.
    9. Yumeng Lan & Masafumi Miyatake, 2022. "An Attended-Free, All-in-One-Go, Automatic Analysis Assistant Software for E-liked Shape Contactless Inductive Power Transfer Device," Energies, MDPI, vol. 15(17), pages 1-23, August.
    10. Xu Yang & Junfeng Yang & Jing Fan & Bao Wang & Dingzhen Li, 2023. "A Position-Insensitive Nonlinear Inductive Power Transfer System Employing Saturable Inductor," Energies, MDPI, vol. 16(5), pages 1-16, March.
    11. Konstantina Dimitriadou & Nick Rigogiannis & Symeon Fountoukidis & Faidra Kotarela & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Current Trends in Electric Vehicle Charging Infrastructure; Opportunities and Challenges in Wireless Charging Integration," Energies, MDPI, vol. 16(4), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    2. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    3. Yan, Xiao-Yu & Yang, Shi-Chun & He, Hong & Tang, Tie-Qiao, 2018. "An optimization model for wireless power transfer system based on circuit simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 873-880.
    4. Mohamad Abou Houran & Xu Yang & Wenjie Chen, 2018. "Free Angular-Positioning Wireless Power Transfer Using a Spherical Joint," Energies, MDPI, vol. 11(12), pages 1-26, December.
    5. Karam Hwang & Jaeyong Cho & Dongwook Kim & Jaehyoung Park & Jong Hwa Kwon & Sang Il Kwak & Hyun Ho Park & Seungyoung Ahn, 2017. "An Autonomous Coil Alignment System for the Dynamic Wireless Charging of Electric Vehicles to Minimize Lateral Misalignment," Energies, MDPI, vol. 10(3), pages 1-20, March.
    6. Francisco Javier López-Alcolea & Javier Vázquez & Emilio J. Molina-Martínez & Pedro Roncero-Sánchez & Alfonso Parreño Torres, 2020. "Monte-Carlo Analysis of the Influence of the Electrical Component Tolerances on the Behavior of Series-Series- and LCC-Compensated IPT Systems," Energies, MDPI, vol. 13(14), pages 1-28, July.
    7. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    8. Stefan Helber & Justine Broihan & Young Jae Jang & Peter Hecker & Thomas Feuerle, 2018. "Location Planning for Dynamic Wireless Charging Systems for Electric Airport Passenger Buses," Energies, MDPI, vol. 11(2), pages 1-16, January.
    9. Alicia Triviño-Cabrera & Zhengyu Lin & José A. Aguado, 2018. "Impact of Coil Misalignment in Data Transmission over the Inductive Link of an EV Wireless Charger," Energies, MDPI, vol. 11(3), pages 1-11, March.
    10. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Jianfeng Hong & Mingjie Guan & Zaifa Lin & Qiu Fang & Wei Wu & Wenxiang Chen, 2019. "Series-Series/Series Compensated Inductive Power Transmission System with Symmetrical Half-Bridge Resonant Converter: Design, Analysis, and Experimental Assessment," Energies, MDPI, vol. 12(12), pages 1-17, June.
    12. Jacek Maciej Stankiewicz, 2023. "Evaluation of the Influence of the Load Resistance on Power and Efficiency in the Square and Circular Periodic WPT Systems," Energies, MDPI, vol. 16(7), pages 1-19, March.
    13. Yao Pei & Yann Le Bihan & Mohamed Bensetti & Lionel Pichon, 2021. "Comparison of Coupling Coils for Static Inductive Power-Transfer Systems Taking into Account Sources of Uncertainty," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    14. Karim Kadem & Mohamed Bensetti & Yann Le Bihan & Eric Labouré & Mustapha Debbou, 2021. "Optimal Coupler Topology for Dynamic Wireless Power Transfer for Electric Vehicle," Energies, MDPI, vol. 14(13), pages 1-18, July.
    15. Zhenshi Wang & Xuezhe Wei & Haifeng Dai, 2015. "Design and Control of a 3 kW Wireless Power Transfer System for Electric Vehicles," Energies, MDPI, vol. 9(1), pages 1-18, December.
    16. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    17. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    18. Seongho Woo & Yujun Shin & Changmin Lee & Jaewon Rhee & Jangyong Ahn & Jungick Moon & Seokhyeon Son & Sanguk Lee & Hongseok Kim & Seungyoung Ahn, 2022. "Minimizing Leakage Magnetic Field of Wireless Power Transfer Systems Using Phase Difference Control," Energies, MDPI, vol. 15(21), pages 1-18, November.
    19. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    20. Andong Yin & Shenchun Wu & Weihan Li & Jinfang Hu, 2019. "Analysis of Battery Reduction for an Improved Opportunistic Wireless-Charged Electric Bus," Energies, MDPI, vol. 12(15), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4962-:d:857306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.