IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6324-d567810.html
   My bibliography  Save this article

Comparison of Coupling Coils for Static Inductive Power-Transfer Systems Taking into Account Sources of Uncertainty

Author

Listed:
  • Yao Pei

    (Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 91192 Gif-sur-Yvette, France
    Sorbonne Université, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 75252 Paris, France)

  • Yann Le Bihan

    (Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 91192 Gif-sur-Yvette, France
    Sorbonne Université, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 75252 Paris, France)

  • Mohamed Bensetti

    (Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 91192 Gif-sur-Yvette, France
    Sorbonne Université, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 75252 Paris, France)

  • Lionel Pichon

    (Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 91192 Gif-sur-Yvette, France
    Sorbonne Université, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 75252 Paris, France)

Abstract

The present work aims at comparing different coupling coils by taking into account sources of uncertainty for static inductive power-transfer (SIPT) systems. Due to the maximum transmission efficiency for the SIPT system related to the mutual inductance between coils, the key point here is to make use of a sparse polynomial chaos expansion (PCE) method to analyze the mutual inductance between the transmitter and the receiver. A fast postprocess-sensitivity analysis allowed the identification of which source of uncertainty was the most influential factor to the mutual inductance for different coupling coils. Furthermore, in view of the relationship between the maximum transmission efficiency and the ratio of the length of wires of a coil and the mutual inductance, circular coupling coils should be recommended for SIPT systems.

Suggested Citation

  • Yao Pei & Yann Le Bihan & Mohamed Bensetti & Lionel Pichon, 2021. "Comparison of Coupling Coils for Static Inductive Power-Transfer Systems Taking into Account Sources of Uncertainty," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6324-:d:567810
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6324/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6324/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Villa, Juan Luis & Sallán, Jesús & Llombart, Andrés & Sanz, José Fco, 2009. "Design of a high frequency Inductively Coupled Power Transfer system for electric vehicle battery charge," Applied Energy, Elsevier, vol. 86(3), pages 355-363, March.
    2. Yang Yang & Jinlong Cui & Xin Cui, 2020. "Design and Analysis of Magnetic Coils for Optimizing the Coupling Coefficient in an Electric Vehicle Wireless Power Transfer System," Energies, MDPI, vol. 13(16), pages 1-15, August.
    3. Stoyka, Kateryna & Di Mambro, Gennaro & Femia, Nicola & Maffucci, Antonio & Ventre, Salvatore & Villone, Fabio, 2021. "Behavioral modeling of Wireless Power Transfer System coils," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 208-220.
    4. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Valentin Rigot & Tanguy Phulpin & Jihen Sakly & Daniel Sadarnac, 2022. "A New 7 kW Air-Core Transformer at 1.5 MHz for Embedded Isolated DC/DC Application," Energies, MDPI, vol. 15(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuezhe Wei & Zhenshi Wang & Haifeng Dai, 2014. "A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Energies, MDPI, vol. 7(7), pages 1-26, July.
    2. Alexander Sutor & Martin Heining & Rainer Buchholz, 2019. "A Class-E Amplifier for a Loosely Coupled Inductive Power Transfer System with Multiple Receivers," Energies, MDPI, vol. 12(6), pages 1-15, March.
    3. Wenz, Klaus-Peter & Serrano-Guerrero, Xavier & Barragán-Escandón, Antonio & González, L.G. & Clairand, Jean-Michel, 2021. "Route prioritization of urban public transportation from conventional to electric buses: A new methodology and a study of case in an intermediate city of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. De Filippo, Giovanni & Marano, Vincenzo & Sioshansi, Ramteen, 2014. "Simulation of an electric transportation system at The Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1686-1691.
    5. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. Joao Victor Pinon Pereira Dias & Masafumi Miyatake, 2018. "Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer," Energies, MDPI, vol. 11(8), pages 1-25, July.
    7. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    8. Karim Kadem & Mohamed Bensetti & Yann Le Bihan & Eric Labouré & Mustapha Debbou, 2021. "Optimal Coupler Topology for Dynamic Wireless Power Transfer for Electric Vehicle," Energies, MDPI, vol. 14(13), pages 1-18, July.
    9. Jianyang Zhai & Xudong Zhang & Shiqi Zhao & Yuan Zou, 2023. "Modeling and Experiments of a Wireless Power Transfer System Considering Scenarios from In-Wheel-Motor Applications," Energies, MDPI, vol. 16(2), pages 1-20, January.
    10. Teresa Pamuła & Wiesław Pamuła, 2020. "Estimation of the Energy Consumption of Battery Electric Buses for Public Transport Networks Using Real-World Data and Deep Learning," Energies, MDPI, vol. 13(9), pages 1-17, May.
    11. Sebastian Angermeier & Jonas Ketterer & Christian Karcher, 2020. "Liquid-Based Battery Temperature Control of Electric Buses," Energies, MDPI, vol. 13(19), pages 1-20, September.
    12. Li, Feng & Li, Yanjie & Zhou, Siqi & Chen, Yifang & Sun, Xuan & Deng, Yutong, 2022. "Wireless power transfer tuning model of electric vehicles with pavement materials as transmission media for energy conservation," Applied Energy, Elsevier, vol. 323(C).
    13. Wassim Kabbara & Mohamed Bensetti & Tanguy Phulpin & Antoine Caillierez & Serge Loudot & Daniel Sadarnac, 2022. "A Control Strategy to Avoid Drop and Inrush Currents during Transient Phases in a Multi-Transmitters DIPT System," Energies, MDPI, vol. 15(8), pages 1-18, April.
    14. Giulia Di Capua & Antonio Maffucci & Kateryna Stoyka & Gennaro Di Mambro & Salvatore Ventre & Vincenzo Cirimele & Fabio Freschi & Fabio Villone & Nicola Femia, 2021. "Analysis of Dynamic Wireless Power Transfer Systems Based on Behavioral Modeling of Mutual Inductance," Sustainability, MDPI, vol. 13(5), pages 1-15, February.
    15. Bong-Gi Choi & Byeong-Chan Oh & Sungyun Choi & Sung-Yul Kim, 2020. "Selecting Locations of Electric Vehicle Charging Stations Based on the Traffic Load Eliminating Method," Energies, MDPI, vol. 13(7), pages 1-20, April.
    16. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    17. Carola Leone & Laura Sturaro & Giacomo Geroli & Michela Longo & Wahiba Yaici, 2021. "Design and Implementation of an Electric Skibus Line in North Italy," Energies, MDPI, vol. 14(23), pages 1-22, November.
    18. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    19. Ilaria Liorni & Oriano Bottauscio & Roberta Guilizzoni & Peter Ankarson & Jorge Bruna & Arya Fallahi & Stuart Harmon & Mauro Zucca, 2020. "Assessment of Exposure to Electric Vehicle Inductive Power Transfer Systems: Experimental Measurements and Numerical Dosimetry," Sustainability, MDPI, vol. 12(11), pages 1-25, June.
    20. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6324-:d:567810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.