IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924007529.html
   My bibliography  Save this article

Optimal design of an LCC-S WPT3 Z1 SAE J2954 compliant system, using NSGA-II with nested genetic algorithms for simultaneous local optimization

Author

Listed:
  • García-Izquierdo, O.
  • Sanz, J.F.
  • Villa, J.L.
  • Martin-Segura, G.

Abstract

Wireless Power Transfer (WPT) for electric vehicles is one of the most promising methods that, given its advantages, will drive the deployment of electric vehicles. This paper presents a mathematical optimization method applied to the complete design of an LCC-S WPT3 Z1 11 kW system that complies with the SAE J2954 standard (Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology, 2020). A design method based on three phases is proposed, allowing the complete inductor system, including ferrites shielding and compensation circuit components, to function in any relative primary and secondary position. In Phase 1, a multi-objective NSGA-II algorithm is designed, utilizing three nested genetic algorithms. The goal is simultaneously searching for the local optimum between the primary and secondary systems in three positions. This is achieved by modeling the circuit’s electrical and electromagnetic parameters with equations, enabling an iterative process with reduced computational time. The NSGA-II algorithm yields three scenarios: primary copper volume minimization, secondary copper volume minimization, and a compromise solution that optimizes the total volume. The result is then modeled in Phase 2 using a 3D finite element program that includes ferrite and optimal shielding, obtaining the values of inductances and mutual inductance in the three positions, as well as design data for manufacturing. This result is introduced in Phase 3 to optimize compensation circuit components using a second NSGA-II algorithm with three nested genetic algorithms. Again, three scenarios are obtained based on the desired system behavior and the optimal cost of the components. The result is validated through simulation with Matlab-Simulink and experimentally using a prototype constructed for this purpose.

Suggested Citation

  • García-Izquierdo, O. & Sanz, J.F. & Villa, J.L. & Martin-Segura, G., 2024. "Optimal design of an LCC-S WPT3 Z1 SAE J2954 compliant system, using NSGA-II with nested genetic algorithms for simultaneous local optimization," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007529
    DOI: 10.1016/j.apenergy.2024.123369
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.