IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v388y2025ics0306261925004179.html
   My bibliography  Save this article

Synergizing regional thermal comfort: A precision demand response strategy for air conditioning systems with motor losses and power flow dynamics

Author

Listed:
  • Du, Pengcheng
  • Yang, Weichong
  • Jiang, Meihui
  • Zhu, Hongyu
  • Kong, Fannie
  • Liu, Tianhao
  • Goh, Hui Hwang
  • Zhang, Dongdong

Abstract

Air conditioning (AC) systems, as flexible loads in demand response control, can adjust their operating parameters and cooling loads to reduce power consumption while maintaining indoor thermal comfort. This approach aids the grid in peak shaving and valley filling, thereby balancing supply and demand. To better harness the demand response potential of AC systems, this paper proposes a Regional Thermal Comfort Division (RTCD)-based demand response control strategy that considers the power flow characteristics and detailed motor losses of the AC system. The proposed strategy offers an innovative solution for integrating AC systems into demand response, dividing response regions based on the indoor thermal comfort requirements of different floors, and maximizing the demand response potential of each area. This control strategy is applied and tested in a 90-floor, Grade A mega office building in Hong Kong. The results, based on simulation validation, indicate that the proposed demand response control strategy enhances the AC system's average load reduction capability by 24 % and demonstrates strong stability across various weather conditions and on both working and non-working days.

Suggested Citation

  • Du, Pengcheng & Yang, Weichong & Jiang, Meihui & Zhu, Hongyu & Kong, Fannie & Liu, Tianhao & Goh, Hui Hwang & Zhang, Dongdong, 2025. "Synergizing regional thermal comfort: A precision demand response strategy for air conditioning systems with motor losses and power flow dynamics," Applied Energy, Elsevier, vol. 388(C).
  • Handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925004179
    DOI: 10.1016/j.apenergy.2025.125687
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiong, Chengyan & Sun, Zhe & Meng, Qinglong & Li, Zeyang & Wei, Yingan & Zhao, Fan & Jiang, Le, 2022. "A simplified improved transactive control of air-conditioning demand response for determining room set-point temperature: Experimental studies," Applied Energy, Elsevier, vol. 323(C).
    2. Zhang, Dongdong & Chen, Baian & Zhu, Hongyu & Goh, Hui Hwang & Dong, Yunxuan & Wu, Thomas, 2023. "Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model," Energy, Elsevier, vol. 285(C).
    3. Dai, Mingkun & Li, Hangxin & Wang, Shengwei, 2023. "A reinforcement learning-enabled iterative learning control strategy of air-conditioning systems for building energy saving by shortening the morning start period," Applied Energy, Elsevier, vol. 334(C).
    4. Hussain, Syed Asad & Huang, Gongsheng & Yuen, Richard Kwok Kit & Wang, Wei, 2020. "Adaptive regression model-based real-time optimal control of central air-conditioning systems," Applied Energy, Elsevier, vol. 276(C).
    5. Kusiak, Andrew & Li, Mingyang & Tang, Fan, 2010. "Modeling and optimization of HVAC energy consumption," Applied Energy, Elsevier, vol. 87(10), pages 3092-3102, October.
    6. García-Izquierdo, O. & Sanz, J.F. & Villa, J.L. & Martin-Segura, G., 2024. "Optimal design of an LCC-S WPT3 Z1 SAE J2954 compliant system, using NSGA-II with nested genetic algorithms for simultaneous local optimization," Applied Energy, Elsevier, vol. 367(C).
    7. Wang, Yi-Fei & Chen, Qun, 2015. "A direct optimal control strategy of variable speed pumps in heat exchanger networks and experimental validations," Energy, Elsevier, vol. 85(C), pages 609-619.
    8. Hui, Hongxun & Ding, Yi & Liu, Weidong & Lin, You & Song, Yonghua, 2017. "Operating reserve evaluation of aggregated air conditioners," Applied Energy, Elsevier, vol. 196(C), pages 218-228.
    9. Xie, Kang & Hui, Hongxun & Ding, Yi & Song, Yonghua & Ye, Chengjin & Zheng, Wandong & Ye, Shuiquan, 2022. "Modeling and control of central air conditionings for providing regulation services for power systems," Applied Energy, Elsevier, vol. 315(C).
    10. Sun, Yue & Luo, Zhiwen & Li, Yu & Zhao, Tianyi, 2024. "Grey-box model-based demand side management for rooftop PV and air conditioning systems in public buildings using PSO algorithm," Energy, Elsevier, vol. 296(C).
    11. Coelho, Leandro dos Santos & Klein, Carlos Eduardo & Sabat, Samrat L. & Mariani, Viviana Cocco, 2014. "Optimal chiller loading for energy conservation using a new differential cuckoo search approach," Energy, Elsevier, vol. 75(C), pages 237-243.
    12. Fu, Yangyang & O'Neill, Zheng & Wen, Jin & Pertzborn, Amanda & Bushby, Steven T., 2022. "Utilizing commercial heating, ventilating, and air conditioning systems to provide grid services: A review," Applied Energy, Elsevier, vol. 307(C).
    13. Tang, Rui & Wang, Shengwei & Shan, Kui & Cheung, Howard, 2018. "Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting," Energy, Elsevier, vol. 151(C), pages 771-781.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Mingzhe & Ooka, Ryozo & Choi, Wonjun & Ikeda, Shintaro, 2019. "Experimental and numerical investigation of energy saving potential of centralized and decentralized pumping systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Cui, Can & Xue, Jing, 2024. "Energy and comfort aware operation of multi-zone HVAC system through preference-inspired deep reinforcement learning," Energy, Elsevier, vol. 292(C).
    3. Dai, Mingkun & Li, Hangxin & Wang, Shengwei, 2024. "Development and implementation of supply-based feedback controls for energy-efficient and grid-interactive cooling management over entire building daily cycle," Energy, Elsevier, vol. 313(C).
    4. Sun, Yue & Luo, Zhiwen & Li, Yu & Zhao, Tianyi, 2024. "Grey-box model-based demand side management for rooftop PV and air conditioning systems in public buildings using PSO algorithm," Energy, Elsevier, vol. 296(C).
    5. Wang, Jiaming & Rezgui, Yacine & Zhao, Tianyi, 2025. "Collaborative optimization method for solving the diffusion and allocation issues in complex variable flow rate HVAC systems," Applied Energy, Elsevier, vol. 378(PA).
    6. Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    7. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    8. Wang, Pengfei & Liu, Yide & Li, Yuchen & Tang, Xianlin & Ren, Qinlong, 2024. "Power prediction for salinity-gradient osmotic energy conversion based on multiscale and multidimensional convolutional neural network," Energy, Elsevier, vol. 313(C).
    9. Molina-Solana, Miguel & Ros, María & Ruiz, M. Dolores & Gómez-Romero, Juan & Martin-Bautista, M.J., 2017. "Data science for building energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 598-609.
    10. Shan, Kui & Wang, Shengwei, 2017. "Energy efficient design and control of cleanroom environment control systems in subtropical regions – A comparative analysis and on-site validation," Applied Energy, Elsevier, vol. 204(C), pages 582-595.
    11. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    12. Foulds, Chris & Powell, Jane, 2014. "Using the Homes Energy Efficiency Database as a research resource for residential insulation improvements," Energy Policy, Elsevier, vol. 69(C), pages 57-72.
    13. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    14. Zang, Xingyu & Li, Hangxin & Wang, Shengwei, 2025. "Levelized cost quantification of energy flexibility in high-density cities and evaluation of demand-side technologies for providing grid services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    15. Yongzhu Hua & Qiangqiang Xie & Liang Zheng & Jiadong Cui & Lihuan Shao & Weiwei Hu, 2022. "Coordinated Voltage Control Strategy by Optimizing the Limited Regulation Capacity of Air Conditioners," Energies, MDPI, vol. 15(9), pages 1-14, April.
    16. Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
    17. Wang, Da & Yang, Mao & Zhang, Wei & Ma, Chenglian & Su, Xin, 2025. "Short-term power prediction method of wind farm cluster based on deep spatiotemporal correlation mining," Applied Energy, Elsevier, vol. 380(C).
    18. Xiong, Chengyan & Meng, Qinglong & Wei, Ying'an & Luo, Huilong & Lei, Yu & Liu, Jiao & Yan, Xiuying, 2023. "A demand response method for an active thermal energy storage air-conditioning system using improved transactive control: On-site experiments," Applied Energy, Elsevier, vol. 339(C).
    19. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    20. Zhao, Xiaoqing & Song, Ye & Huang, Lin & Song, Zihao & Dong, Qichang & Qi, Jiacheng & Shi, Long, 2025. "Controlling double-skin façades with inclined louvers for natural ventilation: An experimental and theoretical study," Applied Energy, Elsevier, vol. 377(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925004179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.