Optimizing the sustainable performance of public buildings: A hybrid machine learning algorithm
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.135283
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Li-Yuan Huang & Xun Zhang & Qiang Wang & Zhen-Song Chen & Yang Liu, 2024. "Evaluating Media Knowledge Capabilities of Intelligent Search Dialogue Systems: A Case Study of ChatGPT and New Bing," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 17284-17307, December.
- Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
- Ganjehkaviri, A. & Mohd Jaafar, M.N. & Hosseini, S.E. & Barzegaravval, H., 2017. "Genetic algorithm for optimization of energy systems: Solution uniqueness, accuracy, Pareto convergence and dimension reduction," Energy, Elsevier, vol. 119(C), pages 167-177.
- Tan, Jiayi & Peng, Shanbi & Liu, Enbin, 2024. "Spatio-temporal distribution and peak prediction of energy consumption and carbon emissions of residential buildings in China," Applied Energy, Elsevier, vol. 376(PB).
- Rahman, M.M. & Rasul, M.G. & Khan, M.M.K., 2010. "Energy conservation measures in an institutional building in sub-tropical climate in Australia," Applied Energy, Elsevier, vol. 87(10), pages 2994-3004, October.
- Wu, Xianguo & Li, Xinyi & Qin, Yawei & Xu, Wen & Liu, Yang, 2023. "Intelligent multiobjective optimization design for NZEBs in China: Four climatic regions," Applied Energy, Elsevier, vol. 339(C).
- Wu, Xianguo & Wang, Jingyi & Feng, Zongbao & Chen, Hongyu & Li, Tiejun & Liu, Yang, 2024. "Multisource information fusion for real-time prediction and multiobjective optimization of large-diameter slurry shield attitude," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- García-Izquierdo, O. & Sanz, J.F. & Villa, J.L. & Martin-Segura, G., 2024. "Optimal design of an LCC-S WPT3 Z1 SAE J2954 compliant system, using NSGA-II with nested genetic algorithms for simultaneous local optimization," Applied Energy, Elsevier, vol. 367(C).
- Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
- Zhang, Yan & Teoh, Bak Koon & Zhang, Limao, 2024. "Multi-objective optimization for energy-efficient building design considering urban heat island effects," Applied Energy, Elsevier, vol. 376(PA).
- Wu, Xianguo & Feng, Zongbao & Chen, Hongyu & Qin, Yawei & Zheng, Shiyi & Wang, Lei & Liu, Yang & Skibniewski, Miroslaw J., 2022. "Intelligent optimization framework of near zero energy consumption building performance based on a hybrid machine learning algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Somu, Nivethitha & Raman M R, Gauthama & Ramamritham, Krithi, 2021. "A deep learning framework for building energy consumption forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Yating Li & William A. Pizer & Libo Wu, 2019. "Climate change and residential electricity consumption in the Yangtze River Delta, China," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(2), pages 472-477, January.
- Chen, Hongyu & Shen, Geoffrey Qiping & Feng, Zongbao & Liu, Yang, 2024. "Optimization of energy-saving retrofit solutions for existing buildings: A multidimensional data fusion approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
- Wang, Yihan & Chen, Chen & Tao, Yuan & Wen, Zongguo & Chen, Bin & Zhang, Hong, 2019. "A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry," Applied Energy, Elsevier, vol. 242(C), pages 46-56.
- Kim, Minho & Chun, Huiyong & Kim, Jungsoo & Kim, Kwangrae & Yu, Jungwook & Kim, Taegyun & Han, Soohee, 2019. "Data-efficient parameter identification of electrochemical lithium-ion battery model using deep Bayesian harmony search," Applied Energy, Elsevier, vol. 254(C).
- Jihoon Moon & Sungwoo Park & Seungmin Rho & Eenjun Hwang, 2019. "A comparative analysis of artificial neural network architectures for building energy consumption forecasting," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.
- Liu, Yang & Pedrycz, Witold & Deveci, Muhammet & Chen, Zhen-Song, 2024. "BIM-based building performance assessment of green buildings - A case study from China," Applied Energy, Elsevier, vol. 373(C).
- Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Liu, Yuechen Sophia & Tayarani, Mohammad & You, Fengqi & Gao, H. Oliver, 2024. "Bayesian optimization for battery electric vehicle charging station placement by agent-based demand simulation," Applied Energy, Elsevier, vol. 375(C).
- Xu, Wenjie & Svetozarevic, Bratislav & Di Natale, Loris & Heer, Philipp & Jones, Colin N., 2024. "Data-driven adaptive building thermal controller tuning with constraints: A primal–dual contextual Bayesian optimization approach," Applied Energy, Elsevier, vol. 358(C).
- Xing, Zhuoqun & Pan, Yiqun & Yang, Yiting & Yuan, Xiaolei & Liang, Yumin & Huang, Zhizhong, 2024. "Transfer learning integrating similarity analysis for short-term and long-term building energy consumption prediction," Applied Energy, Elsevier, vol. 365(C).
- Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
- Yang, Linchuan & Ao, Yibin & Ke, Jintao & Lu, Yi & Liang, Yuan, 2021. "To walk or not to walk? Examining non-linear effects of streetscape greenery on walking propensity of older adults," Journal of Transport Geography, Elsevier, vol. 94(C).
- Zhu, Yi & Xu, Wen & Luo, Wenhong & Yang, Ming & Chen, Hongyu & Liu, Yang, 2025. "Application of hybrid machine learning algorithm in multi-objective optimization of green building energy efficiency," Energy, Elsevier, vol. 316(C).
- Luo, Wenhong & Liu, Weicheng & Liu, Wenlong & Xia, Lingyu & Zheng, Junjun & Liu, Yang, 2025. "Analysis of influencing factors and carbon emission scenario prediction during building operation stage," Energy, Elsevier, vol. 316(C).
- Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
- Dong, Xin & He, Bao-Jie, 2023. "A standardized assessment framework for green roof decarbonization: A review of embodied carbon, carbon sequestration, bioenergy supply, and operational carbon scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Zoubin Ghahramani, 2015. "Probabilistic machine learning and artificial intelligence," Nature, Nature, vol. 521(7553), pages 452-459, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Yi & Xu, Wen & Luo, Wenhong & Yang, Ming & Chen, Hongyu & Liu, Yang, 2025. "Application of hybrid machine learning algorithm in multi-objective optimization of green building energy efficiency," Energy, Elsevier, vol. 316(C).
- Luo, Wenhong & Liu, Weicheng & Liu, Wenlong & Xia, Lingyu & Zheng, Junjun & Liu, Yang, 2025. "Analysis of influencing factors and carbon emission scenario prediction during building operation stage," Energy, Elsevier, vol. 316(C).
- Zhang, Yuyang & Ma, Wenke & Du, Pengcheng & Li, Shaoting & Gao, Ke & Wang, Yuxuan & Liu, Yifei & Zhang, Bo & Yu, Dingyi & Zhang, Jingyi & Li, Yan, 2024. "Powering the future: Unraveling residential building characteristics for accurate prediction of total electricity consumption during summer heat," Applied Energy, Elsevier, vol. 376(PA).
- Zhang, Limao & Chen, Chao & Zhou, Cheng & Luo, Yongqiang & Wu, Xiaoying, 2025. "Zone-based many-objective building decarbonization considering outdoor temperature and occupation uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
- Baidi Shi & Liangxian Zhang & Yongfeng Jiang & Zixing Li & Wei Xiao & Jingyu Shang & Xinfu Chen & Meng Li, 2023. "Three-Phase Transformer Optimization Based on the Multi-Objective Particle Swarm Optimization and Non-Dominated Sorting Genetic Algorithm-3 Hybrid Algorithm," Energies, MDPI, vol. 16(22), pages 1-21, November.
- Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
- Shangfu Wei & Xiaoqing Bai, 2022. "Multi-Step Short-Term Building Energy Consumption Forecasting Based on Singular Spectrum Analysis and Hybrid Neural Network," Energies, MDPI, vol. 15(5), pages 1-21, February.
- Lu, Chujie & Li, Sihui & Reddy Penaka, Santhan & Olofsson, Thomas, 2023. "Automated machine learning-based framework of heating and cooling load prediction for quick residential building design," Energy, Elsevier, vol. 274(C).
- Kang, Yiting & Zhang, Dongjie & Cui, Yu & Xu, Wei & Lu, Shilei & Wu, Jianlin & Hu, Yiqun, 2024. "Integrated passive design method optimized for carbon emissions, economics, and thermal comfort of zero-carbon buildings," Energy, Elsevier, vol. 295(C).
- Wu, Xianguo & Li, Xinyi & Qin, Yawei & Xu, Wen & Liu, Yang, 2023. "Intelligent multiobjective optimization design for NZEBs in China: Four climatic regions," Applied Energy, Elsevier, vol. 339(C).
- Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
- Lee, Junsoo & Kim, Tae Wan & Koo, Choongwan, 2022. "A novel process model for developing a scalable room-level energy benchmark using real-time bigdata: Focused on identifying representative energy usage patterns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Quan, Steven Jige & Xue, Yang & Li, Chaosu, 2025. "Nonlinearity in the relationships between urban form and residential energy use intensity," Applied Energy, Elsevier, vol. 383(C).
- Chen, Xia & Geyer, Philipp, 2022. "Machine assistance in energy-efficient building design: A predictive framework toward dynamic interaction with human decision-making under uncertainty," Applied Energy, Elsevier, vol. 307(C).
- Tingting Hou & Rengcun Fang & Jinrui Tang & Ganheng Ge & Dongjun Yang & Jianchao Liu & Wei Zhang, 2021. "A Novel Short-Term Residential Electric Load Forecasting Method Based on Adaptive Load Aggregation and Deep Learning Algorithms," Energies, MDPI, vol. 14(22), pages 1-21, November.
- Cao, Wenqiang & Yu, Junqi & Chao, Mengyao & Wang, Jingqi & Yang, Siyuan & Zhou, Meng & Wang, Meng, 2023. "Short-term energy consumption prediction method for educational buildings based on model integration," Energy, Elsevier, vol. 283(C).
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "State Space Approach to Adaptive Artificial Intelligence Modeling: Application to Financial Portfolio with Fuzzy System," CARF F-Series CARF-F-422, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Kazimierz Kawa & Rafał Mularczyk & Waldemar Bauer & Katarzyna Grobler-Dębska & Edyta Kucharska, 2024. "Prediction of Energy Consumption on Example of Heterogenic Commercial Buildings," Energies, MDPI, vol. 17(13), pages 1-16, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225009259. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.