IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v339y2023ics0306261923002982.html
   My bibliography  Save this article

Intelligent multiobjective optimization design for NZEBs in China: Four climatic regions

Author

Listed:
  • Wu, Xianguo
  • Li, Xinyi
  • Qin, Yawei
  • Xu, Wen
  • Liu, Yang

Abstract

Near-zero-energy-consumption buildings (NZEBs) are of great significance for sustainable development, and their design and research have attracted increasing academic attention. To drive and realize the energy saving design and achieve carbon emission and thermal comfort optimization of NZEBs, in this paper, an intelligent optimization method integrating the BIM-DB and PSO-RF-NSGA-III method is established. Multiobjective optimization problems involving NZEBs in four typical climate regions in China are explored. With a typical office building as an example, first, simulation calculations regarding the energy consumption, carbon emissions and indoor thermal comfort in the four climatic regions are performed based on orthogonal tests and BIM-DB. Second, the nonlinear mapping relationships between building design parameters and prediction targets are constructed with the PSO-RF model, which is trained with sample data. The obtained nonlinear mapping relations are used to establish the objective function of NSGA-III, and the multiobjective Pareto-optimal solution set is obtained with the developed PSO-RF-NSGA-III algorithm. Finally, the only optimal solution is determined by using the ideal point method, and reference near-zero-energy-consumption office building parameters are calculated for different climate regions. The conclusions are as follows. (1) The PSO-RF algorithm can efficiently predict building energy consumption, carbon emissions and thermal comfort. In the four regions, the goodness of fit of the three targets is greater than 0.94. (2) Multiobjective optimization can be performed with the proposed RF-NSGA-III intelligent optimization method. After optimizing multiple groups of optimization schemes and adopting energy saving measures, the energy consumption levels in the four climate regions are reduced by 39.72 %, 32.22 %, 26.94 % and 35.37 %, and the other goals are optimized. (3) Index calculations indicate that the optimized building design parameters meet the specified standards for NZEBs, and the main influencing factors and corresponding measures vary from region to region.

Suggested Citation

  • Wu, Xianguo & Li, Xinyi & Qin, Yawei & Xu, Wen & Liu, Yang, 2023. "Intelligent multiobjective optimization design for NZEBs in China: Four climatic regions," Applied Energy, Elsevier, vol. 339(C).
  • Handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923002982
    DOI: 10.1016/j.apenergy.2023.120934
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923002982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abokersh, Mohamed Hany & Spiekman, Marleen & Vijlbrief, Olav & van Goch, T.A.J. & Vallès, Manel & Boer, Dieter, 2021. "A real-time diagnostic tool for evaluating the thermal performance of nearly zero energy buildings," Applied Energy, Elsevier, vol. 281(C).
    2. AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Li, Yan & Adamowski, Jan F., 2018. "Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting," Applied Energy, Elsevier, vol. 217(C), pages 422-439.
    3. Ganjehkaviri, A. & Mohd Jaafar, M.N. & Hosseini, S.E. & Barzegaravval, H., 2017. "Genetic algorithm for optimization of energy systems: Solution uniqueness, accuracy, Pareto convergence and dimension reduction," Energy, Elsevier, vol. 119(C), pages 167-177.
    4. Karali, Nihan & Shah, Nihar & Park, Won Young & Khanna, Nina & Ding, Chao & Lin, Jiang & Zhou, Nan, 2020. "Improving the energy efficiency of room air conditioners in China: Costs and benefits," Applied Energy, Elsevier, vol. 258(C).
    5. Harmathy, Norbert & Magyar, Zoltán & Folić, Radomir, 2016. "Multi-criterion optimization of building envelope in the function of indoor illumination quality towards overall energy performance improvement," Energy, Elsevier, vol. 114(C), pages 302-317.
    6. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
    7. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    8. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    9. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    10. Ihara, Takeshi & Gustavsen, Arild & Jelle, Bjørn Petter, 2015. "Effect of facade components on energy efficiency in office buildings," Applied Energy, Elsevier, vol. 158(C), pages 422-432.
    11. D'Agostino, Delia & Parker, Danny, 2018. "A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe," Energy, Elsevier, vol. 149(C), pages 814-829.
    12. Francisco, Abigail & Truong, Hanh & Khosrowpour, Ardalan & Taylor, John E. & Mohammadi, Neda, 2018. "Occupant perceptions of building information model-based energy visualizations in eco-feedback systems," Applied Energy, Elsevier, vol. 221(C), pages 220-228.
    13. Neves, Rebecca & Cho, Heejin & Zhang, Jian, 2021. "Pairing geothermal technology and solar photovoltaics for net-zero energy homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    14. Kunwar, Niraj & Cetin, Kristen S. & Passe, Ulrike & Zhou, Xiaohui & Li, Yunhua, 2020. "Energy savings and daylighting evaluation of dynamic venetian blinds and lighting through full-scale experimental testing," Energy, Elsevier, vol. 197(C).
    15. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    16. Zhou, Zhihua & Zhang, Zhiming & Chen, Guanyi & Zuo, Jian & Xu, Pan & Meng, Chong & Yu, Zhun, 2016. "Feasibility of ground coupled heat pumps in office buildings: A China study," Applied Energy, Elsevier, vol. 162(C), pages 266-277.
    17. Wang, Yihan & Chen, Chen & Tao, Yuan & Wen, Zongguo & Chen, Bin & Zhang, Hong, 2019. "A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry," Applied Energy, Elsevier, vol. 242(C), pages 46-56.
    18. Cho, Hyun Mi & Yun, Beom Yeol & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Optimal energy retrofit plan for conservation and sustainable use of historic campus building: Case of cultural property building," Applied Energy, Elsevier, vol. 275(C).
    19. Wen, Yifan & Wu, Ruoxi & Zhou, Zihang & Zhang, Shaojun & Yang, Shengge & Wallington, Timothy J. & Shen, Wei & Tan, Qinwen & Deng, Ye & Wu, Ye, 2022. "A data-driven method of traffic emissions mapping with land use random forest models," Applied Energy, Elsevier, vol. 305(C).
    20. Chaudhuri, Tanaya & Soh, Yeng Chai & Li, Hua & Xie, Lihua, 2019. "A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings," Applied Energy, Elsevier, vol. 248(C), pages 44-53.
    21. Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.
    22. Assouline, Dan & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2018. "Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests," Applied Energy, Elsevier, vol. 217(C), pages 189-211.
    23. Suwal, Naresh & Huang, Xianfeng & Kuriqi, Alban & Chen, Yingqin & Pandey, Kamal Prasad & Bhattarai, Khem Prasad, 2020. "Optimisation of cascade reservoir operation considering environmental flows for different environmental management classes," Renewable Energy, Elsevier, vol. 158(C), pages 453-464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suli Zhang & Yiting Chang & Hui Li & Guanghao You, 2024. "Research on Building Energy Consumption Prediction Based on Improved PSO Fusion LSSVM Model," Energies, MDPI, vol. 17(17), pages 1-17, August.
    2. Zikang Ke & Xiaoxin Liu & Hui Zhang & Xueying Jia & Wei Zeng & Junle Yan & Hao Hu & Wong Nyuk Hien, 2023. "Energy Consumption and Carbon Emissions of Nearly Zero-Energy Buildings in Hot Summer and Cold Winter Zones of China," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    3. Kang, Yiting & Zhang, Dongjie & Cui, Yu & Xu, Wei & Lu, Shilei & Wu, Jianlin & Hu, Yiqun, 2024. "Integrated passive design method optimized for carbon emissions, economics, and thermal comfort of zero-carbon buildings," Energy, Elsevier, vol. 295(C).
    4. Baidi Shi & Liangxian Zhang & Yongfeng Jiang & Zixing Li & Wei Xiao & Jingyu Shang & Xinfu Chen & Meng Li, 2023. "Three-Phase Transformer Optimization Based on the Multi-Objective Particle Swarm Optimization and Non-Dominated Sorting Genetic Algorithm-3 Hybrid Algorithm," Energies, MDPI, vol. 16(22), pages 1-21, November.
    5. Zhan, Jin & He, Wenjing & Huang, Jianxiang, 2024. "Comfort, carbon emissions, and cost of building envelope and photovoltaic arrangement optimization through a two-stage model," Applied Energy, Elsevier, vol. 356(C).
    6. Xueying Jia & Hui Zhang & Xin Yao & Lei Yang & Zikang Ke & Junle Yan & Xiaoxi Huang & Shiyu Jin, 2023. "Research on Technology System Adaptability of Nearly Zero-Energy Office Buildings in the Hot Summer and Cold Winter Zone of China," Sustainability, MDPI, vol. 15(17), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Xianguo & Feng, Zongbao & Chen, Hongyu & Qin, Yawei & Zheng, Shiyi & Wang, Lei & Liu, Yang & Skibniewski, Miroslaw J., 2022. "Intelligent optimization framework of near zero energy consumption building performance based on a hybrid machine learning algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    3. Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
    4. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    5. Hasim Altan & Bertug Ozarisoy, 2022. "An Analysis of the Development of Modular Building Design Elements to Improve Thermal Performance of a Representative High Rise Residential Estate in the Coastline City of Famagusta, Cyprus," Sustainability, MDPI, vol. 14(7), pages 1-50, March.
    6. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    8. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Fath U Min Ullah & Noman Khan & Tanveer Hussain & Mi Young Lee & Sung Wook Baik, 2021. "Diving Deep into Short-Term Electricity Load Forecasting: Comparative Analysis and a Novel Framework," Mathematics, MDPI, vol. 9(6), pages 1-22, March.
    10. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "A robust design of nearly zero energy building systems considering performance degradation and maintenance," Energy, Elsevier, vol. 163(C), pages 905-919.
    11. Dasheng Lee & Fu-Po Tsai, 2020. "Air Conditioning Energy Saving from Cloud-Based Artificial Intelligence: Case Study of a Split-Type Air Conditioner," Energies, MDPI, vol. 13(8), pages 1-25, April.
    12. Zhang, Sheng & Sun, Yongjun & Cheng, Yong & Huang, Pei & Oladokun, Majeed Olaide & Lin, Zhang, 2018. "Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty," Applied Energy, Elsevier, vol. 228(C), pages 1020-1031.
    13. Ghafoori, Mahdi & Abdallah, Moatassem & Kim, Serena, 2023. "Electricity peak shaving for commercial buildings using machine learning and vehicle to building (V2B) system," Applied Energy, Elsevier, vol. 340(C).
    14. Munguba, C.F.L. & Leite, G.N.P. & Ochoa, A.A.V. & Michima, P.S.A. & Silva, H.C.N. & Vilela, O.C. & Kraj, A., 2024. "Enhancing cost-efficiency in achieving near-zero energy performance through integrated photovoltaic retrofit solutions," Applied Energy, Elsevier, vol. 367(C).
    15. Ren, Ming & Lu, Pantao & Liu, Xiaorui & Hossain, M.S. & Fang, Yanru & Hanaoka, Tatsuya & O'Gallachoir, Brian & Glynn, James & Dai, Hancheng, 2021. "Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality," Applied Energy, Elsevier, vol. 298(C).
    16. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    17. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    18. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
    19. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    20. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923002982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.