IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6402-d1232767.html
   My bibliography  Save this article

Characterization of a Wall System with Dynamic Thermal Insulation—Experimental Campaign and Numerical Simulation

Author

Listed:
  • Ricardo M. S. F. Almeida

    (CONSTRUCT-LFC, Department of Civil Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
    Department of Civil Engineering, School of Technology and Management of the Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal)

  • Maria Teles-Ribeiro

    (CONSTRUCT-LFC, Department of Civil Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • Eva Barreira

    (CONSTRUCT-LFC, Department of Civil Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

Abstract

Dynamic thermal insulation systems (DTISs) can adapt to external environment conditions and help to reduce energy consumption and increase occupants’ thermal comfort, contributing towards the mitigation of overheating. DTISs adjust their configuration to optimize heat transfer through the façade. In this study, the performance of a DTIS was assessed through laboratory tests and numerical simulation. The DTIS is based on the ventilation of an air gap that facilitates the heat exchanges between the exterior and the interior. To extend the results of the experimental campaign, a set of scenarios was assessed based on numerical simulation. The results of the laboratory tests showed that the R -value obtained when the mechanical ventilation of the air gap is off (insulation state) is 3.89 m 2 .°C/W. In comparison, when it is on (conductive state), the R -value is 1.56 m 2 .°C/W, which corresponds to a reduction of approximately 60%. The results of the simulations showed that, when the shading system was on, the higher U-value was useful more than 50% of the time with discomfort, increasing to 75% when the shading system was off.

Suggested Citation

  • Ricardo M. S. F. Almeida & Maria Teles-Ribeiro & Eva Barreira, 2023. "Characterization of a Wall System with Dynamic Thermal Insulation—Experimental Campaign and Numerical Simulation," Energies, MDPI, vol. 16(17), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6402-:d:1232767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Imessad, K. & Derradji, L. & Messaoudene, N.Ait & Mokhtari, F. & Chenak, A. & Kharchi, R., 2014. "Impact of passive cooling techniques on energy demand for residential buildings in a Mediterranean climate," Renewable Energy, Elsevier, vol. 71(C), pages 589-597.
    2. Iasmin Lourenço Niza & Evandro Eduardo Broday, 2022. "An Analysis of Thermal Comfort Models: Which One Is Suitable Model to Assess Thermal Reality in Brazil?," Energies, MDPI, vol. 15(15), pages 1-19, July.
    3. William Nordhaus, 2019. "Climate Change: The Ultimate Challenge for Economics," American Economic Review, American Economic Association, vol. 109(6), pages 1991-2014, June.
    4. Randazzo, Teresa & De Cian, Enrica & Mistry, Malcolm N., 2020. "Air conditioning and electricity expenditure: The role of climate in temperate countries," Economic Modelling, Elsevier, vol. 90(C), pages 273-287.
    5. Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bezerra, Paula & Cruz, Talita & Mazzone, Antonella & Lucena, André F.P. & De Cian, Enrica & Schaeffer, Roberto, 2022. "The multidimensionality of energy poverty in Brazil: A historical analysis," Energy Policy, Elsevier, vol. 171(C).
    2. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    3. Michael Peneder & Spyros Arvanitis & Christian Rammer & Tobias Stucki & Martin Wörter, 2022. "Policy instruments and self-reported impacts of the adoption of energy saving technologies in the DACH region," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 49(2), pages 369-404, May.
    4. Jesica Fernández-Agüera & Samuel Dominguez-Amarillo & Marco Fornaciari & Fabio Orlandi, 2019. "TVOCs and PM 2.5 in Naturally Ventilated Homes: Three Case Studies in a Mild Climate," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    5. Torres-Brito, David Israel & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2023. "Impacto de los contaminantes por gases de efecto invernadero en el crecimiento económico en 86 países (1990-2019): Sobre la curva inversa de Kuznets [Impact of the Effect of Greenhouse Gas Pollutan," MPRA Paper 119031, University Library of Munich, Germany.
    6. Ma, Rui & Marshall, Ben R. & Nguyen, Hung T. & Nguyen, Nhut H. & Visaltanachoti, Nuttawat, 2022. "Climate events and return comovement," Journal of Financial Markets, Elsevier, vol. 61(C).
    7. Gouriéroux, C. & Monfort, A. & Renne, J.-P., 2022. "Required Capital for Long-Run Risks," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    8. Ivan Faiella & Luciano Lavecchia, 2021. "Households' energy demand and the effects of carbon pricing in Italy," Questioni di Economia e Finanza (Occasional Papers) 614, Bank of Italy, Economic Research and International Relations Area.
    9. Ali-Toudert, Fazia & Weidhaus, Juliane, 2017. "Numerical assessment and optimization of a low-energy residential building for Mediterranean and Saharan climates using a pilot project in Algeria," Renewable Energy, Elsevier, vol. 101(C), pages 327-346.
    10. Alessio Terzi & Monika Sherwood & Aneil Singh, 2023. "European industrial policy for the green and digital revolution," Science and Public Policy, Oxford University Press, vol. 50(5), pages 842-857.
    11. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    12. Tim T. Pedersen & Mikael Skou Andersen & Marta Victoria & Gorm B. Andresen, 2021. "30.000 ways to reach 55% decarbonization of the European electricity sector," Papers 2112.07247, arXiv.org, revised Nov 2022.
    13. Hänsel, Martin C. & Franks, Max & Kalkuhl, Matthias & Edenhofer, Ottmar, 2022. "Optimal carbon taxation and horizontal equity: A welfare-theoretic approach with application to German household data," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    14. Martin, R. & de Haas, Ralph & Muuls, Mirabelle & Schweiger, Helena, 2021. "Managerial and Financial Barriers to the Net-Zero Transition," Other publications TiSEM d95224cf-6fd8-486b-b9d7-4, Tilburg University, School of Economics and Management.
    15. Szekeres, Szabolcs, 2020. "Checking the Evidence for Declining Discount Rates," MPRA Paper 102233, University Library of Munich, Germany.
    16. Benedict Clements & Sanjeev Gupta & João Jalles & Bernat Adrogue, 2023. "Climate Change and Government Borrowing Costs: A Triple Whammy for Emerging Market Economies," Working Papers REM 2023/0295, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    17. Aldy, Joseph E. & Burtraw, Dallas & Fischer, Carolyn & Fowlie, Meredith & Williams, Roberton C. & Cropper, Maureen L., 2022. "How is the U.S. Pricing Carbon? How Could We Price Carbon?," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 13(3), pages 310-334, October.
    18. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    19. Haroon Mumtaz & Angeliki Theophilopoulou, "undated". "The distributional effects of climate change. An empirical analysis," Working Papers 966, Queen Mary University of London, School of Economics and Finance.
    20. Abdelkader Laafer & Djaffar Semmar & Abdelkader Hamid & Mahmoud Bourouis, 2021. "Thermal and Surface Radiosity Analysis of an Underfloor Heating System in a Bioclimatic Habitat," Energies, MDPI, vol. 14(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6402-:d:1232767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.