IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922012429.html
   My bibliography  Save this article

Assessment of buildings’ dynamic thermal insulation technologies-A review

Author

Listed:
  • Karanafti, Aikaterina
  • Theodosiou, Theodoros
  • Tsikaloudaki, Katerina

Abstract

Towards the achievement of nZEB and the enormous effort for mitigating climate change effects, new sustainable construction strategies are continuously introduced and adopted in the building sector. Thermal insulation is considered a fundamental strategy before moving to more complex ones. Over the past 50 years, thermal insulation is mainly conceived and implemented through the steady-state heat transfer simplification, making its contribution easy to predict and control with high confidence. While historically, the concept of ‘dynamic thermal insulation’, or otherwise, variable thermal insulation is mainly found in warm regions, numerous recent studies show that there is a continuously growing interest in implementing it into buildings to counterbalance the few disadvantages of intense thermal insulation or to allow buildings adapting to the varying seasonal climate conditions. This interest is depicted in numerous published studies, supporting that thermal insulation can have a more beneficial and complex contribution than the steady-state assumption allows and that it can provide great potential for improving a building’s energy efficiency by advancing and optimizing the envelope’s thermal insulation according to the actual needs of the building on a year-round basis. In this review study, an effort to organize and classify the advances in the field is attempted, aiming at defining the complexity, the limits, the applicability and the barriers of all systems and techniques. Challenges regarding their wide utilization in the construction industry are highlighted, along with suggestions for future research. As the study shows, a few of the many approaches to dynamic thermal insulation can be simple and effective, while others show greater potential. What is more evident thought, is that further research is needed before their implementation can become practical.

Suggested Citation

  • Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012429
    DOI: 10.1016/j.apenergy.2022.119985
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922012429
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miren Juaristi & Thaleia Konstantinou & Tomás Gómez-Acebo & Aurora Monge-Barrio, 2020. "Development and Validation of a Roadmap to Assist the Performance-Based Early-Stage Design Process of Adaptive Opaque Facades," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Favoino, Fabio & Jin, Qian & Overend, Mauro, 2017. "Design and control optimisation of adaptive insulation systems for office buildings. Part 1: Adaptive technologies and simulation framework," Energy, Elsevier, vol. 127(C), pages 301-309.
    3. Taylor, BJ & Imbabi, MS, 1998. "The application of dynamic insulation in buildings," Renewable Energy, Elsevier, vol. 15(1), pages 377-382.
    4. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Performance of precooling strategies using switchable insulation systems for commercial buildings," Applied Energy, Elsevier, vol. 303(C).
    5. Kimber, Mark & Clark, William W. & Schaefer, Laura, 2014. "Conceptual analysis and design of a partitioned multifunctional smart insulation," Applied Energy, Elsevier, vol. 114(C), pages 310-319.
    6. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2019. "The impact of thermal transmittance variation on building design in the Mediterranean region," Applied Energy, Elsevier, vol. 239(C), pages 581-597.
    7. Kishore, Ravi Anant & Bianchi, Marcus V.A. & Booten, Chuck & Vidal, Judith & Jackson, Roderick, 2021. "Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls," Applied Energy, Elsevier, vol. 283(C).
    8. Zhang, Chong & Gang, Wenjie & Xu, Xinhua & Li, Liao & Wang, Jinbo, 2019. "Modelling, experimental test, and design of an active air permeable wall by utilizing the low-grade exhaust air," Applied Energy, Elsevier, vol. 240(C), pages 730-743.
    9. Imbabi, Mohammed Salah-Eldin, 2006. "Modular breathing panels for energy efficient, healthy building construction," Renewable Energy, Elsevier, vol. 31(5), pages 729-738.
    10. Zhang, Chong & Gang, Wenjie & Wang, Jinbo & Xu, Xinhua & Du, Qianzhou, 2019. "Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air," Energy, Elsevier, vol. 167(C), pages 1132-1143.
    11. Tao, Jialu & Luan, Jingde & Liu, Yue & Qu, Daoyu & Yan, Zheng & Ke, Xin, 2022. "Technology development and application prospects of organic-based phase change materials: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Biswas, Kaushik & Lu, Jue & Soroushian, Parviz & Shrestha, Som, 2014. "Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard," Applied Energy, Elsevier, vol. 131(C), pages 517-529.
    13. Tong, Shi Wun & Goh, Wei Peng & Huang, Xiaohu & Jiang, Changyun, 2021. "A review of transparent-reflective switchable glass technologies for building facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Ruiting Zheng & Jinwei Gao & Jianjian Wang & Gang Chen, 2011. "Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    15. Jin, Qian & Favoino, Fabio & Overend, Mauro, 2017. "Design and control optimisation of adaptive insulation systems for office buildings. Part 2: A parametric study for a temperate climate," Energy, Elsevier, vol. 127(C), pages 634-649.
    16. Hudobivnik, Blaž & Pajek, Luka & Kunič, Roman & Košir, Mitja, 2016. "FEM thermal performance analysis of multi-layer external walls during typical summer conditions considering high intensity passive cooling," Applied Energy, Elsevier, vol. 178(C), pages 363-375.
    17. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Energy performance of integrated adaptive envelope systems for residential buildings," Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricardo M. S. F. Almeida & Maria Teles-Ribeiro & Eva Barreira, 2023. "Characterization of a Wall System with Dynamic Thermal Insulation—Experimental Campaign and Numerical Simulation," Energies, MDPI, vol. 16(17), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tyler R. Stevens & Nathan B. Crane & Rydge B. Mulford, 2023. "Topology Morphing Insulation: A Review of Technologies and Energy Performance in Dynamic Building Insulation," Energies, MDPI, vol. 16(19), pages 1-38, October.
    2. Dehwah, Ammar H.A. & Krarti, Moncef, 2022. "Optimal controls of precooling strategies using switchable insulation systems for commercial buildings," Applied Energy, Elsevier, vol. 320(C).
    3. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Kishore, Ravi Anant & Bianchi, Marcus V.A. & Booten, Chuck & Vidal, Judith & Jackson, Roderick, 2021. "Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls," Applied Energy, Elsevier, vol. 283(C).
    5. Miren Juaristi & Thaleia Konstantinou & Tomás Gómez-Acebo & Aurora Monge-Barrio, 2020. "Development and Validation of a Roadmap to Assist the Performance-Based Early-Stage Design Process of Adaptive Opaque Facades," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    6. Zhang, Chong & Wang, Jinbo & Li, Liao & Gang, Wenjie, 2019. "Dynamic thermal performance and parametric analysis of a heat recovery building envelope based on air-permeable porous materials," Energy, Elsevier, vol. 189(C).
    7. Zeng, Zhaoyun & Augenbroe, Godfried & Chen, Jianli, 2022. "Realization of bi-level optimization of adaptive building envelope with a finite-difference model featuring short execution time and versatility," Energy, Elsevier, vol. 243(C).
    8. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Performance of precooling strategies using switchable insulation systems for commercial buildings," Applied Energy, Elsevier, vol. 303(C).
    9. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Energy performance of integrated adaptive envelope systems for residential buildings," Energy, Elsevier, vol. 233(C).
    10. Kimber, Mark & Clark, William W. & Schaefer, Laura, 2014. "Conceptual analysis and design of a partitioned multifunctional smart insulation," Applied Energy, Elsevier, vol. 114(C), pages 310-319.
    11. Pathomthat Chiradeja & Atthapol Ngaopitakkul, 2019. "Energy and Economic Analysis of Tropical Building Envelope Material in Compliance with Thailand’s Building Energy Code," Sustainability, MDPI, vol. 11(23), pages 1-23, December.
    12. Zuhair Jastaneyah & Haslinda M. Kamar & Abdulrahman Alansari & Hakim Al Garalleh, 2023. "A Comparative Analysis of Standard and Nano-Structured Glass for Enhancing Heat Transfer and Reducing Energy Consumption Using Metal and Oxide Nanoparticles: A Review," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    13. Shafaghat, A. & Keyvanfar, A., 2022. "Dynamic façades design typologies, technologies, measurement techniques, and physical performances across thermal, optical, ventilation, and electricity generation outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Cui, Shuang & Kishore, Ravi Anant & Kolari, Pranvera & Zheng, Qiye & Kaur, Sumanjeet & Vidal, Judith & Jackson, Roderick, 2023. "Model-driven development of durable and scalable thermal energy storage materials for buildings," Energy, Elsevier, vol. 265(C).
    15. Kyung-Soon Park & Sang-Woo Kim & Seong-Hwan Yoon, 2016. "Application of Breathing Architectural Members to the Natural Ventilation of a Passive Solar House," Energies, MDPI, vol. 9(3), pages 1-15, March.
    16. Chong Zhang & Jinbo Wang & Liao Li & Feifei Wang & Wenjie Gang, 2020. "Utilization of Earth-to-Air Heat Exchanger to Pre-Cool/Heat Ventilation Air and Its Annual Energy Performance Evaluation: A Case Study," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    17. Fu, Yangyang & O'Neill, Zheng & Wen, Jin & Pertzborn, Amanda & Bushby, Steven T., 2022. "Utilizing commercial heating, ventilating, and air conditioning systems to provide grid services: A review," Applied Energy, Elsevier, vol. 307(C).
    18. Pierluigi De Berardinis & Marianna Rotilio & Luisa Capannolo, 2017. "Energy and Sustainable Strategies in the Renovation of Existing Buildings: An Italian Case Study," Sustainability, MDPI, vol. 9(8), pages 1-20, August.
    19. Mishra, G.K. & Tiwari, G.N., 2020. "Performance evaluation of 7.2 kWp standalone building integrated semi-transparent photovoltaic thermal system," Renewable Energy, Elsevier, vol. 146(C), pages 205-222.
    20. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Cost-benefit analysis of retrofitting attic-integrated switchable insulation systems of existing US residential buildings," Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.